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Abstract: Many advanced ultrasound imaging tech-
niques rely onto knowledge of the electromechani-
cal transfer characteristics of the transducer. State of
the art models based on equivalent circuits, finite el-
ement modelling or measured impulse responses suf-
fer from miscellaneous practical deficiencies. An ex-
perimental identification of a linear transducer model
overcoming some of these problems is presented. The
method is based on parametric system identification
techniques and suitable broadband input signals. Ap-
propriate measurement conditions are derived from
numerical simulations of diffraction effects. The ap-
proach which does not require any advance informa-
tion about the physical properties of the piezoelectric
crystal is shown to result in an accurate model for a
common medical transducer.

Introduction

A piezoelectric ultrasound transducer in pulse echo
imaging is used to transform an electrical signal pro-
duced by some driving circuit into an acoustical wave
and vice versa to transform a pressure wave which im-
pinges onto the transducer into an electrical signal. Since
acoustical properties of the transduction medium are to be
evaluated by an analysis of the received electrical signal,
the connection between the acoustic and electric signals
of a transducer is of great importance in medical ultra-
sound imaging. Coded excitation for example makes use
of broadband signals which must be adapted to the trans-
fer characteristic of the ultrasound probe in order to trans-
mit sufficient energy. Range and resolution of ultrasound
systems can potentially be enhanced by cancellation of
the electroacoustic transfer characteristic by deconvolu-
tion techniques. More general all attempts to simulate ul-
trasonic pulse echo imaging systems depend on a realistic
description of the relation between electric and acoustic
signals.

Complicated measurement schemes have been set up
to acquire those properties of piezoelectric crystals that
determine their electroacoustic behaviour. A combina-
tion of such measurements with equivalent circuits, or
finite element simulations provides analytic models of
the transducer. In many practical cases it is however
favourable to assume linear relations and express the

electroacoustic behaviour of a transducer in terms of a
single transfer function. A transfer function provides in-
tuitive insight into transducer characteristics, like centre
frequency bandwidth and duration of postoscillations and
is suited to be included into software for the simulation
of ultrasound imaging systems. Moreover experimental
methods to derive a transducer model do not comprise
the necessity to know the properties of the piezoelectric
crystal, its backing, and matching layers.

The most common method to measure the transfer
function of a transducer is to position the transducer op-
posite to some reflector and excite it with an electri-
cal pulse signal. The echo signal is measured and its
Fourier transformation is taken as the transfer function
of the transducer. It is well known that for non focussing
transducers even a single point scatterer gives rise to a
complex echo signal with overlapping contributions from
plane and edge wave components due to diffraction. It is
therefore problematic to consider the echo signal to be
the electromechanical impulse response. Removing the
diffraction effects has successfully be done by numeri-
cal deconvolution [1]. Since the diffraction depends on
the geometry of the transducer and its oscillation modes,
deconvolution is only applicable to situations in which
detailed knowledge of the geometrical and mechanical
properties of the transducer is available. It is advanta-
geous to find a measurement set-up in which the diffrac-
tion proves to be negligible. By employing the work of
Rhyne [2] some authors [1, 3, 4] pointed out that the
diffraction effects between a circular non focussing trans-
ducer with pistonlike behaviour and an infinite perfectly
reflecting plane can be neglected if the plane is placed in
the nearfield of the transducer. In this case the assumption
that the measured echo signal due to an impulse excita-
tion resembles the electromechanical impulse response is
thus true. There is some evidence that this holds also for
circular transducers having a Gaussian velocity distribu-
tion [5]. We will show by numerical computations that
the result is valid for rectangular transducers, finite sized
targets of sufficient extends, and non uniform movement
of the transducer surface as well. This gives strong sup-
port that the measurement principal is applicable even if
the exact properties of the transducer are unknown.

Direct measurement of the impulse response belongs
to the class of non parametric system identification meth-
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 ods [6]. It is afflicted with practical difficulties due to
the inability to create pulses of sufficiently short dura-
tion, transient behaviour of the transducer and a poor sig-
nal to noise ratio of the measured impulse response. We
therefore suggest the use of parametric system identifica-
tion methods based on ARX- or alternatively ARMAX-
system models and linear frequency modulated excitation
signals. These methods, which have, to our knowledge,
not yet been applied to ultrasound transducers, potentially
overcome the mentioned drawbacks associated with nee-
dle shaped signals.

Methods and materials

Electromechanical Transfer Function:The elec-
tromechanical behaviour of a piezoelectric transducer is
governed by the relation between the physical properties
voltageu(t) and currenti(t) on the electrical side and
pressurep(rS, t) onto and normal velocityvn(rS, t) of the
transducer surface on the mechanical side [7]. HererS

denotes a position on the surface of the transducer andt
denotes time. The relation between pressurep(r , t) and
particle velocityv(r , t) at some pointr inside a transduc-
tion medium with densityρ is given by

ρ
∂v(r , t)

∂ t
= −∇p(r , t), (1)

while the relation between voltage and current depends
on the impedanceZi(t) of the driving circuit. In a given
experimental set-up the behaviour of the transducer can
thus be described by just one quantity on the electrical
and one quantity on the acoustical side. Since a transmit-
receive-switch is usually used to decouple the electrical
circuit for transmission,Zi(t) is time dependent and it
is necessary to distinguish between the two conditions
transmission and reception. The transducer in transmit
mode can then be regarded as a device which reacts to
some input voltage ˆu(t) with a displacement of its surface
at positionrS with a normal velocityvn(rS, t). In receive
mode it is convenient to describe the transducer as being
pressure sensitive i. e. to react to the total active pressure
P(t) onto its surfaceSwith an output voltage ˆy(t). Under
the assumption that time and space variables are separa-
ble at the surface of the transducer one can write [8]

vn(rS, t) = Γ (rS)v(t) (2)

and accordingly

P(t) =
∫∫

S
Γ (rS)p(rS, t)dS. (3)

The weighting functionΓ (rS) is called velocity distribu-
tion and accounts for position dependent sensitivities of
the transducer surface.

If nonlinear behaviour is neglected, the transducer can
be described as a scalar causal linear time invariant sys-
tem (LTI-system) with the impulse responsehTrm(t)

v(t) =
∫ ∞

−∞
hTrm(t − τ)û(τ)dτ (4)

in transmit, impulse responsehRec(t)

ŷ(t) =
∫ ∞

−∞
hRec(t − τ)P(τ)dτ (5)

in receive mode and the surface velocity distribution
Γ (rS). The pulse-echo electromechanical impulse re-
sponse is defined to be the convolution of the impulse
responses in transmit and receive mode:

hPE(t) =
∫ ∞

−∞
hTrm(t − τ)hRec(τ)dτ. (6)

Its Fourier transformation

HPE( f ) =
∫ ∞

−∞
hPE(t)e

j2π f tdt. (7)

is the electromechanical transfer function of the trans-
ducer.

Experimental Set-up:We derived the transfer func-
tion HPE( f ) of a piezoelectric ultrasound transducer for
medical applications. The exciting frequency modulated
binary signals (pseudochirps) ˆy(t) were created by the
one channel ultrasound device PCM 100 (Inoson GmbH,
St. Ingbert). The same device was used to amplify and
digitize the echo signal trace ˆu(t) at a sample frequency
fS = 25 MHz. As a medium for sound propagation we
used distilled water, which has previously been degassed
by heating it to 80°C for one hour. The reflection from
a circular planar reflector with a diameter of 80 mm in
a distance of 8 mm to the transducer surface was mea-
sured. The reflector was built of an air cavity separated
from the surrounding water by a thin plastic membrane.
It was placed inside a quadratic basin with 300 mm side
length. The electromechanical transfer functionHPE( f )
of the transducer has been determined by means of a
parametrized model which relates the echo signal ˆy(t) to
the input signal ˆu(t) in the time domain.

Computations and simulations were performed in
Matlab® on standard PCs. The integrals in (15) and (17)
have been solved by an iterative Simpson’s algorithm,
while the spatial impulse responses have been calcu-
lated by employing the ultrasound simulation software
Field II [9]. For minimization of (25) the Nelder-Mead
simplex algorithm with the outcome of the least-squares
method as initial values has been used.

Diffraction Effects: The incident pressure field
p0(r , t) from a finite transducer placed inside an infinite
rigid baffle at a pointr in a homogeneous medium with
densityρ and sound speedc is [8]

p0(r , t) = ρ
∫∫

S

∂
∂ t

vn (rS, t −|r − rS|/c)
2π|r − rS|

drS. (8)

Substituting (2) this can be expressed as the convolution

p0(r , t) = ρ
∫ ∞

−∞

∂
∂τ

hSp(r , t − τ)v(τ)dτ (9)

with the spatial impulse response

hSp(r , t) =
∫∫

S
Γ (rS)

δ (t −|r − rS|/c)
2π|r − rS|

drS. (10)
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 Every point rR on a reflector surface can approxi-
mately be assumed to react to the incident pressure
like a monopole with a particle velocityvR(rR, t) =
KRp0(rR, t), thus to emit a spherical pressure wave

ps(r , t) = ρKR
∂
∂ t

p0 (rR, t −|r − rR|/c)
2π|r − rR|

, (11)

whereKR is a constant which accounts for the scattering
strength. This approximation is not strictly valid due to
the fact that the particles of the reflector surface can not
freely move [10, p. 300], but has proven to provide results
for plane surface reflectors normally aligned to the trans-
ducer which are in good agreement with experimentally
measured echoes [11, 12]. Using the reciprocity theorem
[10, pp. 642–643] which states, that a small source and a
receiver can be interchanged, it is evident, that the inte-
grated pressureP(rR, t) onto the transducer surfaceSdue
to the spherical waveps(r , t) can be calculated from the
spatial impulse response that determines the pressure at
the point reflector:

P(rR, t) = ρ
∫ ∞

−∞

∂
∂ t

hSp(rR, t − τ)vR(rR,τ)dτ, (12)

where hSp(r , t) has been defined in (10). In a linear
model, the echo wave from a finite sized target can be
calculated by summing up the contributions of all point
sources i. e. by integrating over the reflector surfaceR.
The total pressure onto the transducer is thus

P(t) =
∫∫

R
P(rR, t)drR. (13)

The Combination of (6), (9) and (13) provides a com-
plete system model for the experimental setup described
above:

ŷ(t) = û(t)∗hPE(t)∗
∂
∂ t

hRC(t), (14)

where the convolution integrals have been denoted by the
shorthand symbol∗ andhRC(t) is the so called radiation
coupling function

hRC(t) =
∫∫

R

∂
∂ t

hSp(rR, t)∗hSp(rR, t)drR, (15)

which accounts for diffraction effects between the trans-
ducer and the reflector. For our purposes it is more il-
lustrative to examine diffraction effects in the frequency
domain, therefore the pressure coupling transfer function

HRCp( f ) =
∫ ∞

−∞

∂
∂ t

hRC(t)ej2π f tdt (16)

is introduced.
If the reflecting plane is assumed to be infinite in

space, calculation of the radiation coupling function can
be simplified by using the concept of mirror sources [10,
pp. 36–37] as it has been done for a circular piston trans-
ducer opposite to a rigid plane [2]. The computation
of hRC(t) reduces to the computational less demanding
equation

hRC(t) =
∫∫

M
hSp(rM)drM . (17)

HerehSp(rM) is the spatial impulse response of the trans-
mitter at a pointrM on the surface of the mirror trans-
ducer, which is thought to be placed opposite to the real
transducer at twice the distance plane–transducer. We
will show that for a reflector of 80 mm diameter, contri-
butions from the edge of the reflector to the output signal
ŷ(t) are negligible and (17) is therefore applicable to our
measurements.

In the system model (14) the influences of the radia-
tion coupling functionhRC(t) and the electromechanical
impulse responsehPE(t) are separated from each other.
As will be shown later our experimental set-up ensures
negligible influence of diffraction onto the output voltage
ŷ(t). It is thereby possible to obtain the electromechanical
behaviour of the transducer from measurements of ˆy(t) to
some known input ˆu(t) by applying a parametrized model
which describes solely the electromechanical transducer
behaviour. Since the input and output signals that are pro-
cessed by the ultrasound device PCM 100 are digitalized
we will now consider the sampled counterparts of ˆu(t),
ŷ(t) as system in- and output and denote them as ˆu(k)
andŷ(k), wherek∈ N andt = k/ fS.

System Identification:A standard system model is the
autoregressive model with an exogenous variable (ARX-
model) which can be denoted as a linear difference equa-
tion:

ỹ(k) =
m

∑
µ=0

bµ û(k−µ)−
n

∑
ν=1

aν ỹ(k−ν)+n(k). (18)

The first two terms describe a lti-system with an impulse
response

h̃PE(k) =
m

∑
µ=0

bµ δ (k−µ)−
n

∑
ν=1

aν h̃PE(k−ν) (19)

while the last addend adds a disturbance which accounts
for those parts of ˜y(k) that can not be expressed by an im-
pulse response due to time-variant, stochastic, or nonlin-
ear system behaviour. If the disturbance can be assumed
to be the moving average of some white noise signalε(k)
with Gaussian amplitude distribution of zero mean, the
ARX-model can be extended to the autoregressive mov-
ing average model with an exogenous variable (ARMAX-
model):

ỹ(k)=
m

∑
µ=0

bµ û(k−µ)−
n

∑
ν=1

aν ỹ(k−ν)+
o

∑
ω=1

cω ε(k−ω),

(20)
a structure commonly used in control engineering [6].
The coefficientsbµ , aν and possiblycω are adjustable
parameters which are to be estimated for an appropriate
model orderm, n and possiblyo.

In order to approximate the true system behaviour as
close as possible by the impulse responseh̃PE(k) the con-
tribution of n(t) to the model (18) must be minimized. A
natural criterion would be the difference between the out-
put signal of the model ˜y(k) and the measured output ˆy(k)
under the assumption of zero disturbance:

e(k) = ỹ(k)− ŷ(k)|n(k)=0 . (21)
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 The seriese(k) is the so called output error. Substituting
(18) into this equation leads to

e(k) =
m

∑
µ=0

bµ û(k−µ)−
n

∑
ν=1

aν ỹ(k−ν)− ŷ(k). (22)

The output signal ˜y(k) of the system model is however not
known prior to the estimation of the unknown parameters
bµ andaν . To employ a linear estimation the output signal
of the model ˜y(k) is therefore replaced by the measured
signalŷ(k) in (22):

e′(k) =
m

∑
µ=0

bµ û(k−µ)−
n

∑
ν=1

aν ŷ(k−ν)− ŷ(k). (23)

The variablee′(k) is called equation error. The unknown
parametersbµ , aν and possiblycω can be estimated by
minimizing an appropriate functional of the equation er-
ror e′(k). The sum of squared errors over a defined time
horizon

E(m,n,bµ ,aν) =
K

∑
k=1

e′2(k) (24)

for the ARX-model or

E(m,n,o,bµ ,aν ,cω) =
K

∑
k=1

e′2(k) (25)

for the ARMAX-model respectively is the most
commonly applied error functional. Minimization of
E(m,n,bµ ,aν) corresponds to linear regression and is
usually named least-squares method, while minimiza-
tion of E(m,n,o,bµ ,aν ,cω) provides the maximum-
likelihood estimator for the Gaussian white noiseε(k) in
(20) and is therefore called maximum-likelihood method.

Parameters ˜als
ν andb̃ls

µ from the least-squares method
will be unbiased estimates foraν and bµ respectively
only if the equation errore′(k) is white noise [13]. That
is generally not true because of its correlation with past
system outputs as analysis of (22) reveals. However, the
bias is small in case of a high signal-to-noise ratio. The
maximum-likelihood method requires thatε(k) is Gaus-
sian white noise to make the estimated parameters ˜aml

ν
and b̃ml

µ unbiased estimates foraν and bµ respectively,
which can be assumed in many practical cases. Minimiza-
tion of (25) is a nonlinear task and can therefore only be
performed iteratively, while finding the minimum with re-
spect to (24) is a linear problem.

Results

The radiation coupling functionhRC(t) between a cir-
cular piston transducer with a radius of 3.2 mm and a cir-
cular reflecting plane of radius 10 mm placed opposite to
each other in a distanced = 8 mm is shown in Figure 1.
The initial high peak corresponds to the reflected plane
wave component, while the slight curvature which starts
at 14 µs is present due to reflections from the edge of
the reflector. The edge contribution is much smaller than
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Figure 1: Radiation coupling function of a circular piston
transducer (radius 3.2 mm) and a circular reflecting plane
(radius 10 mm) situated in a distance of 8 mm to each
other.
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Figure 2: Pressure coupling amplitude response for trans-
ducers opposite to a plane reflector in 8 mm distance.
Circular piston transducer: solid line; Rectangular piston
transducer: dashed line; Rectangular transducer with non
uniform velocity distribution: dotted line.

the plane wave contribution, so that its influence onto the
echo signal ˆy(t) might well be neglected. The influence
is even lower for larger reflectors as the one we used in
our experimental set-up. The reflecting plane can thus be
regarded infinite and the concept of mirror sources (17)
might be applied for calculation of radiation coupling
functions.

The pressure coupling amplitude response
|HRCp( f )|2 corresponding to the radiation coupling
function in Figure 1 is depicted in Figure 2 (solid
line). Additionally the pressure coupling amplitude
responses of a rectangular piston transducer with side
lengths 5 mm x 4 mm (dashed line) and a rectangular
transducer with the same dimensions but velocity dis-
tribution Γ (x,y) = sin(xπ/5 mm+ yπ/4 mm) (dotted
line) are plotted for the same transducer – reflector
distance. Diffraction effects are negligible, i. e. the
pressure coupling amplitude response is relatively flat,
for frequencies above 2 MHz for all transducers. Our
investigations indicate, that the edge frequency above
which diffraction effects can be neglected depends
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Figure 3: Variability of the pressure coupling amplitude
response in the frequency range 2 MHz upto 8 MHz
as a function of distance between transducer and reflec-
tor. Circular piston transducer: circles; Rectangular pis-
ton transducer: squares; Rectangular transducer with non
uniform velocity distribution: diamonds.

mainly on the transducer size and the distance to the
reflector but less on the actual transducer geometry
or mode of oscillation i. e. velocity distribution. The
variability of the pressure coupling amplitude response
|HRCp( f )|2 between 2 MHz and 8 MHz

V(d) = max|HRCp( f )|2−min|HRCp( f )|2

2 MHz < f < 8 MHz

is plotted as a function of distanced between transducer
and reflector in Figure 3 for the three transducer types
described above.

The transducer under test was modelled by a discrete
linear system of ordern = m = 6 using a sampling fre-
quency fS = 25 MHz. Increasing the system order fur-
ther did not lead to significant reduction of the output er-
ror e(k) as is illustrated in Figure 4, where the error is
plotted as a function of the system order. Only subtle dif-
ferences between the ARX-model derived by the least-
squares method and the ARMAX-model derived by the
maximum-likelihood method could be noticed. The elec-
tromechanical transfer functionHPE( f ) of the transducer
has been derived from the ARX-model. The correspond-
ing Bode diagram is depicted in Figure 5. The diagram
shows the bandpass characteristic of the transducer. It has
got a centre frequency of 4.9 MHz and a 3 dB-bandwidth
of 1.6 MHz.

A good agreement between the modelled and mea-
sured behaviour of the transducer could be recognized in
the time domain. In Figure 6 the modelled and measured
system response to a linear frequency modulated signal
(3 MHz - 6 MHz) not previously used for model deriva-
tion is shown. The sum of squared output errors was be-
low 2 % of the total signal energy.
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Figure 4: Dependency of the output error on the order of
the system model.
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Figure 5: Bode diagram of the system model.

Discussion

We described a method to derive the electromechani-
cal transfer function of ultrasonic transducers from mea-
surements of echo signals due to excitation with fre-
quency modulated signals. This approach proved to be
useful in deriving a realistic transducer model. The influ-
ence of diffraction effects have been outlined and a mea-
surement set-up which minimizes those effects has been
suggested.

It turned out, that the least-squares method and the
maximum-likelihood method gave very similar results.
We already stated that both methods lead to unbiased es-
timates for the unknown parametersaν andbµ in absence
of noise and provide very similar results in low noise sit-
uations. Since in our measurements a very high signal
to noise ratio was attained, similarity of least squares re-
sults and maximum likelihood results is in good agree-
ment with expectations. Because of its computational ad-
vantages the linear least squares method appears to be
preferable for the derivation of the transfer functions of
ultrasound transducers in practise.
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Figure 6: Comparison of the measured (solid line) and
modelled (dashed line) system output.
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[3] L HÉMERY, A. and RAILLON , R. Impulse response
method to predict echo repsonses from targets of
complex geometry. Part II. Computer implementa-
tion and experimental validation.J. Acoust. Soc.
Am., 95:1790–1800, 1994.

[4] SZABO, T. L., KARBEYAZ , B. Ü., CLEVELAND ,
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