
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 DISTRIBUTED ARCHITECTURE FOR REAL TIME JPEG2000 MEDICAL
IMAGES DECOMPRESSION AND VISUALIZATION

J. L. García de Arboleya, R. González, P. Cosías, G. Bueno *

* Universidad de Castilla-La Mancha, E.T.S.I. Industriales, Ciudad Real, Spain

gloria.bueno@uclm.es

Abstract: New medical equipment enable integrate
digital imaging technologies suitable for medical
diagnosis. This paper present some of the work
carried on in this field of Biomedical Informatics for
jpeg200 medical images decompression and
visualization. The final purpose of this work is to
develop an imaging system to assist pathologist
examining histological and cytological slides samples
and improve the diagnosis within pathology.

Introduction

The way biomedical research deals with data at
different information levels is still a challenge, [1].
Furthermore when this data is medical image, aiming to
process and obtain the relevant information, [2].

This paper addresses the processing of JPEG2000
medical image for pathology. The size of pathological
images is one of the major problems when analysing
them. A solution to this problem has been given with
the use of JPEG2000 format. This format allows
progressive and partial decompression at different
resolutions, which is one of advantages when reducing
computational cost for display and processing, but it
complicates the implementation of this visualization,
[3].

In this work, we have developed a interactive image
viewer, specific for pathology purposes, with the
possibility of connection to an external system for fast
decompression. We have also developed such a system
for JPEG2000 decompression which consist on a set of
programs capable to distribute the load among all the
available resources.

In this introduction we will give a background over
the JPEG2000 compression.

The JPEG2000 file format

The JPEG2000 compression splits the image in tiles,

usually 1024x1024 pixels, converts the three colour
channels to the YCrCb space and processes
independently each of the channels as shown in Figure 1
and explained in [8].

The wavelet transform leaves the image in the
wavelet space in squares low and high pass
(LL,LH,HL,HH). Each one of the squares is called a
sub-band.

The quantization step removes the frequencies that
have a contribution close to zero and group the sub-
bands in blocks called precincts.

The EBCOT algorithm reorganize the information in
bit-planes and group them again, giving code-blocks,
[4].

Finally, there is a last step of clustering, that groups
all the code-blocks in layers, according to an uniform
visual perception of the quality.

After compressing each of the three channels, they
are compressed a second time together with the EZW
[8] algorithm, and finally joined to other tiles to form a
code-stream [4,8] called JP code-stream or JPC.

Figure 1: Compression of JPEG2000 colour channel

The JP code-stream is finally embedded in the JP2 file,
which contains a header, a fine color tuning table and
some other image data Figure 2.

Figure 2: Internal blocks structure of a JP2 file

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 The EBCOT algorithm organizes the bits in such a
way that optimizes the decompression later, and the
clustering will divide the data into layers, to allow
partial decompression [6].

Once the JPC is completed it is integrated into the
JP2 file (see figure 2).

The JPEG2000 process is performed for every
codified tile (a codified tile is a SOD marker segment in
the embedded JPC). The required steps are [3]:

• Entropy decoder
• Region of Interest (ROI) decoder
• Decuantizer
• DW inverse transform
• Inverse intercomponent transform

The YCrCb Colour Space

This colour space was introduced as an scaled

version of the previous YUV and YIQ (PAL and NCTS
colour systems for TV), adapted to the luminance of the
computer screens [9].

The change from RGB to YCrCb is linear and is
given by the following matrix:

−−
−−=

B
G
R

Cb
Cr
Y

.
100.0515.0615.0

436.0289.0147.0
114.0587.02999.0

 (1)

Nevertheless the image can also be stored in the HSV
colour space for the processing algorithms, as it is the
case for the pathology images [4].

The wavelet space

The colour components will be stored in the wavelet

space. The wavelet transform is a bi-dimensional
discrete one and it is applied in a multi-resolution
scheme [3,5].

The wavelet transform is implemented with a
progressive filter through bi-orthonormal wavelets. with
scaling function [8,11]. This is explained in the
following points.

The discrete wavelet transform

Usually we define continous wavelet transform as

the decomposition coefficients of a function f(t) in the
wavelet basis:

∫= dtttfts st).().(),(ψγ (2)

the discrete form of this expresion is:

∑=
k

stst kkf)().(ψγ (3)

The scaling function and biorthonormality

When we do not have a orthonormal basis in a space
we still can use the dual basis of the given one to
operate with vector components [8].

We define dual basis as some vectors ê such as:

ijji ee δ=,)
 (4)

We will use this bi-orthonormal structure for
performing the wavelet transform step by step,
performing a high-pass filter with the mother wavelet
and a low-pass filter with the dual basis, also called
scaling function [8,11].

With this dual basis, we can compute the
components of a vector using the scalar product as:

∑ ∑==
i i

iiii eevevv .,.)rr
(5)

Therefore its space is orthonormal to the mother
wavelet.

∑=
kj

jk tkjt
,

)().,()(ψγφ
(6)

This equation define the scaling function from the

mother wavelet where the γ functions are the basis on
which we want to project our function, and the
coefficients gamma are components function f(t) that we
have decomposed.

This identity has to be true for any set of coefficients
gamma coming from any possible f(t).

Iterative wavelet transform schema

The low pass filter covers the frequencies not

covered by the high pass filter. We can consider its
output in the image space and the one provided by the
high pass filter in the wavelet space.

For obtaining the complete wavelet transform we
have to use all the family wavelets over the image, but
this schema allow us to do it step by step.

Being the wavelet space such as its members are the
mother dilations (equivalent to use the mother wavelet
over the scaled image version), we can perform a
second step over the low pass image with the mother
wavelet again.

The problem with this schema is that the spectrum is
non-uniformly covered. The low frequencies are badly
covered and with every wavelet we include we reduce
the interval only to the half.

Therefore the number of wavelets for a complete
basis would be infinite and we will have to leave a part
of the image without transforming.

We call bi-orthonormal basis to the set of a finite
number of wavelets and a scaling function orthogonal to
all of them, which will perform the role of the dual basis
previously said.

Bi-orthonormal basis will assure that the
decomposition of a signal is unique, and that the
reconstruction will be possible.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 The discrete wavelet filter CDF 9/7

We define CDF filter (Cohen, Daubechies, Faubeau)

as the biorthonormal wavelet filter with 4 zeros direct
and 4 inverse, taken with 9 and 7 taps different to zero.

The coefficients are the ones shown at the [table 1]
taken from [8]

k Low Pass High Pass

0 0.60294901823 1.115087052456

+/-1 0.26686411844 -0.591271763114

+/-2 -0.0782232665 -0.057543526228

+/-3 -0.0168641184 0.091271763114

+/-4 0.02674874108 0.0

Table 1: Mother wavelet coefficients and the scaling
function

Their graphics are plotted in the following Figure 3.

Figure 3: Mother wavelet and scaling function

Figure 4: 1st DWT step for a histological image

The figure 4 shows the result of performing the bi-

dimensional image transform, defined as the horizontal
and vertical transforms of the rows and columns.

EBCOT and clustering with EZW

The JPEG2000 format is based in EBCOT

(Embedded Block Coding with Optimized Truncation).
This allow us to read blocks of the image secuentially,
which gives a better performance thanks to the hard disk
buffers in the controllers [4]

The idea of the Embedded zero tree wavelet is to

store the wavelet coefficients as if it were a tree,
following the path used while computing them [10]

MQ arithmetic compression

The first step, the entropy decoding, in fact are two

different steps, a MQ aritmethic decoder and a EZW
decoder.

The aritmethic compression is similar to the
Huffmann code. In fact is a generalization of his
algorithm.

Materials and Methods

The external grid

The implemented architecture is a set of servers
intended to run on a multiprocessor system or a cluster.
The task distribution is based on the data available and
therefore no load of synchronization or interdependency
for the servers is imposed. For this reason a cluster is
more suitable for this purpose. This cluster has been
implemented in this project Figure 5.

Figure 5: Network architecture of the grid

It consists of three PC computers, with processors
AMD 3.2 Mhz. with a star connection, using a 100 Mbit
ethernet switch, as shown in Figure 5.

This cluster is used for decompression of the
JPEG2000 format but is expected to work to improve
browsing speed in the client and for image processing.

For each of these purposes the cluster will run a set
of specific servers that intercommunicate with each
other.

Besides, though the physical connection of the
cluster nodes will be a bus, each one of the servers set
will consider a virtual architecture, based on the
expected work loads.

The JPEG2000 decompression architecture

The decompression architecture is a three-tier

structure, in which there is a server that plays the role of
scheduler, other that plays the role of the block servers
in the compressed file, and there is a whole middle layer
of N computers that performs the decompression, as
shown in Figure 6, where N=3 in this work.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

Figure 6: Server’s architecture for JPEG2000
decompression

Additional tools for the cluster

We have compiled our programs with the gcc
compiler. Appart of that we have installed:

• NFS, exporting the 3rd layer disk
• NFS clients in the middle layer, mounting it
• rsh, rlogind, rexec servers in the middle layer.

For monitoring the cluster load we have used the

following tools:

• Network monitor: Ethereal
• CPU, memory and swap: Gnome system

monitor

The grid at Figure 8 is implemented in general with
N PC computers and a switch, being N = 4 in this case.
The blocks server was implemented exporting a hard
diks partition using the NFS protocol.

The main PC was a Dell Precision 370, with 3Ghz.
that was running several services Figure 7:

• The user control interface
• The interactive viewer for the user
• The NFS server for exporting a partition
• The shared partition with the file to

decompress
• A X-server for monitoring the cluster.
• Main thread of the decompression program, or

scheduler
• A server that will act as interface between the

viewer and the decompressed image on disk

We have used just three nodes in out middle layer,
which are three PCs with AMD 3.2 Ghz processors and
1Gb of RAM each.

Two different configurations Figure 9 were tried to
compare performance. The second trial consisted in
using the cluster as an intermediate cache. The direct

access to the shared disk yielded a better performance,
though probably this would be different with more than
three nodes in the middle layer or with a disk not local.
We have used the operating system Redhat Fedora 4.0
in the three nodes at the middle layer, with the NFS
locking system for controlling concurrent accesses

a) Direct access from the server to the disk

b) Access to the disk using the cluster as cache

Figure 7: Two different connections from the
visualization station to the external decompression

cluster

The Tasks Server or scheduler

The tasks server’s work is to collect requests from

the user interface and to split it out into subtasks and, at
the same time, to keep an actualized list of the medium
layer servers and their status. We have launched two
threads to perform these two tasks at the same time.

The thread for the list maintenance is simply
listening in a socket and forks (creates dinamically a
new process) when a connection request comes, using
the standard sockets library over TCP/IP.

This new forked process will act as a handler for the
connection request and will live until the connection
ends. This process is responsible for registering the
server’s IP that it handles and for opening unix pipe for
communication with it.

The other thread will wait for user interface requests
and will split them among the available servers. For this
purpose, the server list is shared between the two
threads and standard concurrency handling mechanisms
were implemented.

The communication from this second thread and the
processes, which are descendents from the other thread
will be done through the standard unix pipe that the first
thread opens. These pipes will be alive while the
handler is, and are registered in the list of available
servers.

Finally, the communications between the task server
and the processing servers will be done using the

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 standard sockets library, in a port that the server will
decide (currently 6767)

The intermediate Servers

The intermediate computers run just a normal Unix
daemon wich listen to requests of image parts from the
task server, get the compressed image part,
decompresses it and returns it to the Task Server.

Currently this servers are just working as a middle
layer for a fast jp2 decompresion. Once the servers have
decompressed the tile they are iddle and ready to be
used in the image processing task.

In the future this middle servers will accept several
commands for performing algorithms over the image.
That is the overall objective of this project

The developed JPEG2000 decoder is based on the
Jasper codec by Adams M. D. [3]. It has been modified
as following:

• 64bit addressing for each pixel of the tile was added

• Seek instructions while writing the tiles onto disk,
have been removed

Thus, we have been able to decompress an image with
25 tiles of 4096x4096 in 25 minutes in one AMD
sempron 3Ghz.

The blocks servers

We have distributed the compressed image to the
cluster just by sharing a hard drive by NFS and
mounting it in the cluster nodes. The NFS protocol
hides the request to our program.

This server is the one that contains the JP2 file. The
server funcion is to distribute JPEG2000 blocks when
requested. As we said before, the JPEG2000
decompresion is slow in layer 2 Figure 8 and therefore a
single server from layer 3 will serve several others
requests from layer 2.

The JPEG2000 decoder

This decoder is running in layer 2. The decoder

developed here is only able to decompress the lossy
compresion that is the one generated by the scanners we
have tried.

The decoding process is similar to the one described
in the introduction.

Is worthy to mention that we do not treat lossless
compression in our program. For the wavelet transform
we use the CDF 7/9 six times.

From the point of view of the implementation, the
clients have to pass a number of parameters as strings to
the server when they perform the request. These
parameters codify the height and width of the window
we want to obtain, the scale in the x and y coordinates
and the starting coordinates of the requested window.

Results

Our aim is to develop an environment for allowing

the doctors to handle JPEG2000 medical images. The
load time of the image, is mainly the time it takes to
decompress it. With a Sempron 3000 it took 25min. to
decompress a 17000x17000 image Figure 8.

Figure 8: Image 17000x17000 used during the
experiments

On a grid with three intermediate nodes we have

reduced the 25 minutes of loading to 10. Adding an
additional Pentium 4 to 3.2 Ghz we reduced it further to
4 min.

We have also included a button in the user interface
for browsing and loading JP2 images on the local disk
of the visualization station, which should be shared by
NFS before sending it through the network, saving in
this way bandwidth.

Load on the network while distribution the files

The load in the network and the shared drive work

was in the beginning even lower than expected. This
was due to the fact that while reading the tiles, we have
to decompress them, being slower the process of
reading that the network

The control over the cluster is performed through the
scheduler Figure 9.

Figure 9: Visualization station and interface with the
cluster

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 The CPU load of the three node’s cluster while
decompression is shown in Figure 10.

Figure 10: Gnome-system-manager running in 3 node’s

grid through X

The network loads while decompression is shown in
Figure 11. Only the scheduler and one of the nodes are
shown.

Figure 11: Network load for the monitoring machine
and one of the nodes during decompression

The user interface

We want a double window. One for control user and
the other for whole image display Figure 12. The user
may move the frame in real time across the image,
having at the same time a high resolution and global
view in the 2nd window.

The problem was that having a huge image non
fixable in memory and a slow network we could not
give an interactive view. We have solved this by
creating a buffer of adjustable size and giving a preview
of this buffer in the second window while moving the
mouse.

We have increased the speed rejecting mouse events
produced by mouse dragging. The viewer was made on
Linux, using the graphical tool Glade and the widgets
library GTK+. Apart of the possibility of connection to
the external decompression cluster, it has its own
algorithms for independent parsing for the formats
PPM, JP2 and non-compressed TIFF.

Figure 12: The viewer showing two portions of an
image at different resolutions

The viewer was integrated with the command

window, for browsing and opening the JPEG2000 files
available in the cluster. Figure 13.

Figure 13: Control window of the viewer, able to

sending decomp ression requests to the cluster

The Web interface

We have also developed a web interface to the
cluster that allows the user to browse the JPEG2000
files, to order their decompressions and to visualize
them Figure 14.

This interface interacts with the cluster for two
purposes: Request for decompression and request for
data.

It was implemented using a JavaScript embedded in
the html that performs requests to a remote CGI bridge.
This bridge in turn interacts with the cluster for
retrieving the requested image via sockets in the port
6767.

Figure 14: Firefox web browser displaying two images

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

Future developments

This platform will be modified tailored to the
medical image processing needs. It is worthy to mention
that the size of the medical images requires a
parallelization of the image processing algorithms.

Usage of the cluster for RAID-like storage

At storage time, we break the JP2 file in its blocks

and we send each one to one of the nodes . In this way,
every node have in its local disk the tiles that

We have used the cluster for storage in such a way
that the fall of a node will prevent the availability of a
portion of the image.

We can make our cluster resistant to a single error
(1-fall safe) if we store each of the blocks in at least two
nodes.

The idea is to implement a redundant array of
inexpensive disks, (RAID) using the cluster. The
software for detecting the fall and reconnection of nodes
will have to be implemented first.

MPI support

All the parallelization was performed with shared
files and NFS locks. In the future MPI support through
LAM will be included for allowing parallel image
processing.

The MPI call for decompression simply allocates
memory (local to each node) and fills it while
decompressing the data from the NFS drive.

When needed, another MPI call will read the remote
structure as required. We have implemented also MPI
calls which escalate the image as required

Progressive decompression

The system described here is based in the Jasper

codec. This does not allow progressive decompression.
Progressive decompression may speed up the

process of previewing the image. For this reason we
plan to implement it in a near future.

Acknowledgement

This research has been funded thanks to the projects
INBIOMED ISCIII-G03/160 and MEC/PBI-03-017.

Conclusions

The cluster for decompression yields a processor

occupation of nearly 100% due to the parallel structure
of the JP2 format.

The decompression time goes down from 25:12
minutes in an AMD Sempron 3000 to 8:32 with three
nodes equivalent, very close to the theoretical limit for a
cluster.

The performance for visualization is not improved
using a cache when the shared disk is local to the
visualization station. In the case that the disk is not local
to this machine, it will speed up the whole process.

References

[1] MARTÍN-SÁNCHEZ F., (2003) Synergy between

Biomedical Informatics for Future Healthcare.
Journal Biomedical Informatics 37: 30-42

[2] GARCIA -ROJO M, et al. (2001) Information

System for an Anatomical Pathology Dpt., J.S.
Pathological Review, 34 (2): 111-126.

[3] ADAMS, M. D. (2000) Jasper, a software based

JPEG2000 codec implementation, IEEE ICIP, 117-
120

[4] TAUBMAN, D. (2000) High scalable image

compression with EBCOT. Proc. of IEEE. Int.
Conf. of Image(3)

[5] MING G., et al. (2003) Computer Aided Cancer

Prostate diagnosis, using image enhancement and
JPEG2000. Proc. Of SPIE annual meeting

[6] JAMES C. WANG et. al. (2000) Multiresolution

analysis of pathology images using wavelets.

[7] RIKKE D. G. GUI development with Glade2,

http://www.kplug.org/glade_tutorial

[8] Lo standard JPEG2000, Instituto Politecnico di

Torino,
http://www.vlsilab.polito.it/Thesis/Vacca/cap1.pdf

[9] GONZÁLEZ R. C., WOODS, R. E, (1992) Digital

Image Processing, Addison-Wesley

[10] SHAPIRO, J. M, (1993) Embedded image coding

using zero-trees of wavelet coefficients, IEEE
Transactions on Signal Processing, Vol. 41, No. 12,
p. 3445-3462

[11] MALLAT, S. G. (1989) Theory for multiresolution

signal decomposition: the wavelet representation;
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11, No. 7, 674-693.

