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Abstract: This paper shows the behavior of the 
CMLP neural network, in recognition and 
classification of epileptiform patterns in EEG, in 
particular, dealing with spike and eye-blink 
patterns. Despite development of a number of 
approaches based on real neural networks to 
automatically detect epileptiform patterns [3], [9], 
[11], [12], these systems are still jeopardized by 
frequent false-positive detections, many times due to 
ocular movements [12]. The CMLP neural network 
presents interesting features in this application such 
as: (a) the learning speed is several times faster than 
in the RMLP [8]; (b) the space complexity is only 
about half of the real MLP [7];(c) comprehension of 
many mathematical objects is more substantial 
when they are considered in the complex plane, 
because part of its related information is 
fundamentally complex, such as the phase [6]. This 
work uses an EEG database, obtained at MNI 
(Montreal Neurological Institute). Three 
electroencephalographers marked the spike and 
blink events of the EEG signals. The approach has 
been validated with statistical parameters for 
sensitivity and specificity.  
 
Introduction 
 

Over the times, research has been carried out on the 
automatic detection of epileptogenic events with the 
object of helping in the diagnosis of epilepsy indicative 
patterns, in an attempt to diminish the revision times of 
the electroencephalogram registers (EEG) and facilitate 
visualization. The big difficulty is the complexity of 
the rhythms found in the EEG.  

This work aims at contributing to this automation, 
verifying the validity of the complex networks in the 
recognition of epileptogenic patterns and supplying 
technology to the SIDAPE (Argoud [2]) project 
developed with the Biomedical Engineering Institute of 
the Universidade Federal de Santa Catarina (UFSC) 
[Federal University of Santa Catarina], which has as 
one of its main problems, the large number of FP 
(False-Positives) generated by ocular activity, 
especially eye-blinks. 

We also intend, through this work, to minimize one 
of the critical aspects in the automatic detection of 

spikes which is that of the automatic differentiation 
between these epileptogenic patterns and ocular 
movement patterns. 

 Therefore, the main focus of this work is to 
implement the MLP network with complex 
backpropagation algorithm and confirm its efficiency 
in the recognition of epileptogenic patterns, that is to 
say, establish a complex more efficient than the real 
network in this task, Pereira[10]. 

 
Materials and methods 
 

We utilized the complex MLP network in this work, 
where the complex backpropropagation algorithm was 
developed by Nitta [7] and is described by the 
equations (1) − (14).  
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where, Wnm is the complex value of the weight of the 
neuron connection n and m. Xm is the complex value of 
the entry signal of the neuron m and Vn is the complex 
value of the threshold of the neuron n. To obtain the 
value of exit signal complex, one converts the 
activation value Ym into real and imaginary parts, as in 
Equation (2): 
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The exit function of each neuron is considered in 
Equation (3): 
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The value of fR(u) is a sigmoidal function presented 
in Equation (4): 
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Wml was used for the weight between the entry 

neuron l and the hidden layer m, Vnm, for the weight 
between the hidden layer neuron m and the exit neuron 
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 n, θm, as the threshold of the hidden layer neuron m, 
and γn as the threshold of the exit neuron n, 
respectively. Being that Il,, Hm and On denote the value 
of the entry neuron l, of the hidden layer neuron m and 
of the exit neuron n, respectively. Being that, Um and Sn 
also denote the potential inside of the hidden layer 
neuron m and of the exit neuron n, respectively. These 
terms are related in the Equations (5) to (8). 
 
  ∑ +=

l mlmllm IwU θ                    (5)                                                                                

   ∑ +=
m nmnmn HvS γ                (6)                                                                                  

  )( mCm UfH =                                 (7)                                                                           
  )( nCn SfO =                                   (8)                                                                        
 

The error between the actual pattern On and the 
target Tn of the exit neuron n is obtained by Equation 
(9). 

 
  nn
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One can define the quadratic error of a pattern p as 

per Equation (10): 
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where, N is the number of exit neurons. 

The learning rule for the backpropagation algorithm 
with complex values and descriptions assuming a 
sufficiently small learning constant (learning speed) ∈ 
> 0 and the unitary matrix A. One demonstrated that the 
weights and the thresholds can be modified in 
accordance with the Equations (11) − (14). 
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The real MLP, utilized to compare the performances, 
was implemented through the backpropagation 
algorithm developed by Amari [1], which corresponds 
to the MLP which we know. This algorithm can be 
described following the rules for the up-dating of the 
backpropagation real algorithm, Equations (15)−(18). 

 
  nmnm Hv γ∆=∆         (15)                      

  n
nnn OO δεγ )1( −=∆                    (16)                      

  mlml Iw θ∆=∆                               (17)                       

 ∑ ∆−=∆
n

nnmmmm vHH γθ )1(                  (18)                      

where δn, Il, Hm, On, vnm, γn, wml, θm are all real numbers. 
 
We utilize as an EEG data base, the data bank which 

was obtained in the MNI (Montreal Neurological 
Institute), of examinations of seven patients proven to 
be epileptics, on a long-term monitoring basis, where 
two of them underwent this same monitoring in two 
different moments. We can therefore consider that we 
have 9 groups of examinations, corresponding to seven 
patients.  

The bank was sampled at 100Hz and was separated 
in files of 15s signals for each one. We made a random 
selection and separated 30 files of each patient in a 
total of 270 windows of 15s each. These files were 
submitted to evaluation by three 
electroencephalographers who carried out the reading 
of the events: spike and eye-blinks.  

The topology utilized in the CMLP and RMLP 
networks was a three layer feedforward perceptron, 
(100-27-1).  

We trained the networks with 120 signal epochs: 60 
with spikes and 60 with eye-blinks. The tests were 
made with 600 signal epochs, different to the training 
signals, being that 300 were spike epochs and 300 eye-
blinks.  

For comparison reasons, the initial weights of the 
complex network, were saved for each training; in the 
training of the real networks, the real part of the 
complex weights was utilized, saved from the previous 
training.  

The signals were pre-processed by FFT, in order to 
remove the sensibility of the network in relation to the 
position of the event in each signal extension.  

To confirm the efficiency and effectiveness of the 
CMLP compared to RMLP, we applied the statistical 
sensitivity and specificity Equations (19) and (20). 

 
 Sensitivity = (PTx100)/(PT+FN)                          (19) 

 
Specificity = (NTx100)/(NT+FP)                          (20) 

 
where PT – positive truth ; NT – negative truth; FP – 
false positive; FN – false negative. 
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 Results 
 

The CMLP and RMLP networks were trained with 
values from the learning constant, varying from 0.1 to 
0.6, with a stop criterion of 0.1 (Nitta [7]). The training 
signals were presented to the network in a random 
sequence, unlike those utilized in the tests. 

Table 1 which shows the training behavior, confirms 
the convergence capacity and the learning speed of the 
complex network in relation the real one, Nitta[7]. In 
this table the training numbers 0-6 correspond to the 
CMLP network and 7-12 to the RMLP network. In the 
table, CP – corresponds to the (critério de para) (stop 
criterion) (average quadratic error), CT – (número de 
ciclos de treinamento) (number of training cycles), ε – 
learning constant and FA – (função de ativação) 
(activation function), NC – (não houve convergência) 
(no convergence). 

 
Table 1: Behavior of the networks during the definite 
training. The training of 1 to 6 corresponds to the 
CMLP and 7 to 12, to RMLP 
 

Training CP ε CT FA 
1 0.1 0.1 28,541 Sigmoidal
2 0.1 0.2 5,944 Sigmoidal

3 0.1 0.3 3,388 Sigmoidal

4 0.1 0.4 3,869 Sigmoidal

5 0.1 0.5  NC  Sigmoidal

6 0.1 0.6  NC Sigmoidal

7 0.1 0.1 36,231 Sigmoidal

8 0.1 0.2 15,873 Sigmoidal

9 0.1 0.3 10,582 Sigmoidal

10 0.1 0.4 7,838 Sigmoidal

11 0.1 0.5 6,509 Sigmoidal

12 0.1 0.6 5,525 Sigmoidal
 

  Table 2 illustrates the results of the tests with the 
networks which converged during the training and 
shows the identification capacity of the presence or not 
of the determined event, spike or eye-blink, at entry, 
graphs 1 and 2, according to Nita (apud Pereira[10]).  
 
Abbreviations 
 

MLP – Mulilayer Perceptron; 
CMLP – Mulilayer Perceptron with complex 

 backpropagation algorithm; 
RMLP – Multilayer Perceptron with real 

 backpropagation algorithm; 
BP – Backpropagation; 

EEG – Electroencephalogram; 
  

 
 
 

Table 2: Performance of the complex and real networks 
for each training constant applied 
 

Tests of 600 epochs Sensitivity Specificity ε 
CMLP 53.00% 60.00% 0.1 

  51.00% 54.66% 0.2 
  63.00% 46.00% 0.3 
  66.00% 46.00% 0.4 
  NC NC 0.5 
  NC NC 0.6 

RMLP 53.33% 53.33% 0.1 
  53.33% 53.33% 0.2 
  53.33% 53.33% 0.3 
  53.33% 53.33% 0.4 
  53.33% 53.33% 0.5 
  53.33% 53.33% 0.6 

 
Graph 1 represents one of the exits of the CMLP test 

and graph 2 represents one of the exits of the RMLP 
test. The lower and upper constant lines in each graph 
represent the positive detection thresholds for eye-
blinks and spikes respectively. An eye-blink event 
which generates a test exit value larger than 0.7, 
characterizes a false positive detection. On the other 
hand, a spike event which produces a test exit value 
less than 0.3, characterizes the presence of a false 
negative.  
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Graph 1: CMLP test exit with 30 epochs containing 
spikes and 30 containing eye-blinks. Network exit 
values less than 0.3 represent eye-blinks and values 
above 0.7, spikes. The patterns in black are the eye-
blinks and the red, spikes. 
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Graph 2: RMLP test exit with 30 epochs containing 
spikes and 30 containing eye-blinks. Network exit 
values less than 0.3 represent eye-blinks and values 
above, spikes. The patterns in black are the eye-blinks 
and the red, spikes. 
 
Conclusions 
 

By observing the results obtained for the definite 
training (Table 2) we were able to conclude that the 
complex networks are more effective and efficient with 
regard to the differentiation between spikes and eye-
blinks, taking into consideration the training carried out 
with the learning constant ε of 0.1, which corresponds 
to the best performance obtained during the training. 
The graphs 1 and 2 also enable us to see the more 
efficient separation of the CMLP in relation to RMLP. 
Graph 1 (CMLP) shows a clearer separation between 
spikes and eye-blinks, according to Nitta (apud Pereira 
[10]), we could observe that 57% of the eye-blinks and 
67% of the spikes were classified correctly, whilst 43% 
of the eye-blinks were classified as spikes and 33% of 
the spikes were classified as eye-blinks. In graph 2, the 
epileptiform events coincide with the eye-blinks more 
frequently, which proves the separation between the 
events, since they present the same exit value. We were 
able to observe in this graph that 53% of the eye-blinks 
and 53% of the spikes were correctly classified whilst 
47% of the eye-blinks were classified as spikes and 
47% of the spikes as eye-blinks. 

We can deduce from the results obtained for CMLP 
in relation to RMLP, that the complex information 
which is usually not considered, makes the difference 
to produce more precise results (Hirose [4]). 

We noted that the spikes and eye-blinks which are 
difficult automatic differentiation patterns in the 
domination of real numbers can be better separated 
using the CMLP, table 2, according to Nitta (apud 
Pereira [10]).   

CMLP also needed a considerably lower number of 
training cycles during the learning (between 30% and 
230% fewer cycles) when compared to RMLP (Nitta 
[7]) 

These results suggest that the introduction of 
complex information, that is to say, phase and 
amplitude of parameters which define a neural network, 
is appropriate and can improve the performance of 
same (Nitta [7]). 
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