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Abstract: Brain functional connectivity can be 
characterized by the temporal evolution of 
correlation between signals recorded from spatially-
distributed regions. It is aimed at explaining how 
different brain areas interact within networks 
involved during normal (as in cognitive tasks) or 
pathological (as in epilepsy) situations. Numerous 
techniques were introduced for assessing this 
connectivity. Recently, some efforts were made to 
compare methods performances but mainly 
qualitatively. In this paper, we go further and 
propose a comprehensive comparison of some 
different methods (linear and nonlinear regressions, 
phase synchronization (PS), and generalized 
synchronization (GS)) based on relevant simulation 
models. For this purpose, quantitative criteria are 
used: in addition to mean square error (MSE) under 
null hypothesis (independence between two signals) 
and mean variance (MV) computed over all values of 
coupling degree, we devised a new criterion for 
comparing performances. Results show that the 
performances of the compared methods are highly 
depending on the hypothesis regarding the 
underlying model for the generation of the signals. 
Moreover, none of them outperforms the others in 
all cases and the performances hierarchy is model-
dependent  
 
Introduction 
 

Brain functional connectivity can be characterized 
by the temporal evolution of correlation between signals 
recorded on spatially-distributed regions. It is aimed at 
explaining how different brain areas interact within 
networks involved during normal (as in cognitive tasks) 
or pathological (as in epilepsy) situations. Numerous 
techniques were introduced for assessing this 
connectivity. In early fifties, first methods were 
proposed to address these questions [1]. They were 
based on temporal cross-correlation and its counterpart 
in the frequency domain, the coherence function [2, 3], 
after the introduction of the fast Fourier transformation 
(FFT) [4]. Some other methods based on these two 
techniques were later introduced by using time-varying 
model [5, 6] for characterizing the functional 
interactivity in the time or/and frequency domain 
between brain structures.  

As these methods are mostly linear, recently a 
considerable number of researches have been dedicated 
to the development of new nonlinear approaches [7], 
because of the nonlinear nature of EEG signals. A 
family of methods based on mutual information [8] or 
on nonlinear regression [9, 10] was first introduced in 
the EEG field. Another family is currently developing, 
based on works related to the study of nonlinear 
dynamical systems and chaos [11, 12]. The latter family 
is divided into two groups: PS methods [13, 14] which 
first estimate the phase of each signal and secondarily 
compute an index to determine the degree of 
relationship based on covariation of extracted phases; 
and GS methods [15, 16], also consisting of two steps, 
first reconstruct the state space and then compute an 
index of similarity which represents how much the 
behaviors of time series are similar in the state space. 

Considering the diversity and number of methods 
introduced for characterizing brain signal couplings, 
there is a need for identifying objectively, among all 
these methods, those applicable to a given clinical 
condition and which approach performs better. 
Recently, some efforts were made for comparing 
methods performances but mainly qualitatively [17] and 
for particular application [18].  

In this paper, based on relevant simulation models, 
we go further and propose a comprehensive comparison 
of classes of methods (linear and nonlinear regressions, 
phase synchronization, and generalized 
synchronization). For this purpose, quantitative criteria 
are used: in addition to mean square error (MSE) under 
null hypothesis (independence between two signals) and 
mean variance (MV) computed over all values of 
coupling degree, we devised a new criterion for 
comparing performances. 
 
Materials and Methods 
 

We have investigated some of the widely used 
methods for characterizing interactions between 
systems. They are belonging to three categories:  

(i) Linear and nonlinear regression: Pearson 
correlation coefficient (R²); coherence function (CF); 
nonlinear regression (h²).  

(ii) Phase synchronization: Hilbert phase 
entropy (HE); Hilbert mean phase coherence (HR); 
wavelet phase entropy (WE); wavelet mean phase 
coherence (WR).  
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 (iii) Generalized synchronization: three similarity 
indexes (S, H, N); synchronization likelihood (SL).  

Here we review succinctly their definitions.  
i) Pearson coefficient of correlation, for two time 

series ( )x t  and , is defined in the time domain as 
follows [19] 
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where var, cov, and τ  denote respectively variance, 
covariance, and time shift between the two time series. 
The variance and covariance are computed within a 
sliding window centered at time t. 

The magnitude-squared coherence function as 
counterpart of R² in the frequency domain can be 
formulated as [20] 
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where ( )xxS f  and ( )yyS f  are respectively the power 

spectral densities of x  and , and y ( )xyS f  is their 
cross-spectral density . 

Different techniques are available for performing 
nonlinear regression. Here, we concentrate on h² which 
fits a nonlinear curve by piece-wise linear 
approximation [9] 
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where 

( ) ( )( ) ( ) ( )( )( )2
var / arg min

g
y t x t E y t g x tτ τ⎡+ +⎣� ⎤− ⎦  

here g  is an approximation of the mapping function 
from x  to . y

ii) Phase synchronization estimation consists of two 
steps [13]. The first step is the instantaneous phase 
extraction of each signal and the second step is the 
quantification of synchronization degree via an 
appropriate index. Phase extraction can be done by 
different techniques. Two of them are used in this work: 
the Hilbert transform and the wavelet transform. Using 
the Hilbert transform, analytical signal associated to a 
real time series ( )x t  is derived: 

( ) ( ) ( ) ( ) ( ) ,
H
xi tH

xZ t x t i x A t e φ= + =⎡ ⎤⎣ ⎦  x  

where ,  H
xφ , and H

xA  are respectively the Hilbert 
transform, the phase, and the amplitude of ( )x t . 
Complex continuous wavelet transform can also be used 
to estimate the phase of signal [21]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,*
W
xi tW

x xW t x t t x t t dt A t e φψ ψ ′ ′ ′= = − = ⋅∫  

where ψ  , W
xφ , and W

xA  are respectively a wavelet 
function (e.g. Morlet used here), the phase, and the 
amplitude of ( )x t . Once phase extraction is performed 
on two signals, several synchronization indices can be 
used to quantify phase relationship. In this study, we 
explored two of them both computed from the shape of 
the probability density function (pdf) of the phase 
difference ( x yφ φ φ= − ). The first index is stemmed 
from Shannon entropy and defined as follows [22] 
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where M is the number of bins used to estimate the pdf, 
 is the probability of finding the phase difference ip φ  

within the i-th bin, and  is given by maxH ln M . The 
second index, which is named mean phase coherence 
[23], is taken equal to the intensity of the first Fourier 
mode of the distribution  
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where N is the length of time series. Combining two 
ways of phase extraction and two indices for 
quantification of phase relationship, we obtain four 
different measures of interdependencies: Hilbert entropy 
(HE), Hilbert mean phase coherence (HR), wavelet 
entropy (WE), and wavelet mean phase coherence 
(WR). 

iii) Generalized synchronization is also a two step 
procedure. First, the state space for each time series is 
reconstructed using a time delay embedding method 
[24]. This technique makes it possible to investigate the 
interaction between systems without any knowledge 
about governing equations. For each time n a delay 
vector corresponding to a point in the reconstructed 
state space for x is defined as  

( )( )1, , , , 1, ,n n n n mX x x x n Nτ τ+ + −= =… …  

where m is the embedding dimension and τ  denotes 
time lag. The state space of y is reconstructed in the 
same way.  

Second, synchronization is determined via a suitable 
measure. Four measures are presented in this study 
based on conditional neighborhood. The principle is to 
estimate the proximity of neighbor points in the second 
state space from temporal indices of corresponding 
neighbors in the first state space. Three measures S, H, 
and N [15], which are sensitive to the direction of 
interaction, originate from this principle and use 
Euclidean distance: 
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where ( ) ( )k
nR X  and ( ) ( |k

nR X Y )  are given by: 
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where  and , , 1, ,n jr j k= … , , 1, ,n js j = … k  respectively 
stand for the time indices of the k nearest neighbors of 

nX  and . nY
The fourth measure, referred to as synchronization 
likelihood (SL) [16], is originally a measure of 
multivariate synchronization. Here we only focus on the 
bivariate case. The probability for the distance between 
embedded vectors nX  to be less than ε  is 
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where ⋅  is the Euclidean distance, U  stands for 
Heaviside step function,  is the Theiler correction, 
and  determines the length of sliding window. 
Letting 

1w

2w

, ,x n y n reP P Pε ε= = f  be an arbitrary probability, the 
above equation for nX  and its analogous for , gives 
the critical distances 

nY

,x nε  and ,y nε  from which we can 
determine if nX  is close to jX  and  is close to  
simultaneously i.e.  in the equation below 

nY jY

, 2n jH =
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Synchronization likelihood at time n can be obtained 
by averaging over all values of j 
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All these measures, except H, are evolving between 
0 and 1. The 0 value means that the two signals are 
independent. On the opposite, the value 1 means that the 
two signals are completely synchronized.  

In order to comprehensively simulate a wide range 
of coupled temporal dynamics we used various 
mathematical models as well as a physiologically-
relevant computational model of EEG simulation from 
coupled neuronal populations. All models share, a 
common feature: they integrate a parameter which 
controls the degree of coupling, i.e. increasing this 
parameter from zero to maximal leads to the generation 

of signals either independent or highly related (in some 
cases gives identical signals). The physiological 
explanation, based on the neuronal populations 
activities concepts, for choosing these kinds of models 
are given in our previous work [25].  

Model M1 generates two broadband signals ( 1 2,x x ) 
from the mixing of two independent white noises (N1, 
N2) and a common noise (N3): 
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where 0 C 1≤ ≤  is the coupling degree; for 0C =  the 
signals are independent and for  they are identical. 1C =

In model M2, four lowpass filtered white noises 
(NF1, NF2, NF3, and NF4) are combined in two ways to 
generate two narrowband signals around a frequency 

. Generated signals share either a phase relationship 
(PR) or an amplitude relationship (AR), only: 
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where 0 1C≤ ≤ , 2 2
1 1 2

2 2
2 3 4A NF NF= +A NF NF= + , , 

( )2
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32 arctan NF
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generated signals have independent phase and amplitude 
and for 1C =  they have identical phase or amplitude.  

We also evaluated interdependence measures on 
signals obtained from models of coupled nonlinear 
oscillators. Here we report one of them: the Rössler 
coupled systems (M3) [26], in which the driver system is 
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and the response system is 
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here 0.95xω = , 1.05yω = , and C is the coupling 
degree. 

Finally, in order to match some dynamics 
encountered in real epileptic EEG signals; we 
considered a physiologically relevant computational 
model of EEG generation from two coupled populations 
of neurons. Main model parameters include excitation, 
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 inhibition and coupling degree between the two 
considered populations (model M4) [27]. This model 
was used to generate two kinds of signal: the 
background EEG (M4 (BKG)) and spiking (M4 (SPK)) 
EEG activity. For both cases, coupling parameter was 
varied from 0 (independent situation) to a maximum 
value under which temporal dynamics of signals stay 
unchanged. 

For all models and all values of the degree of 
coupling parameter, long time-series were generated in 
order to address some statistical properties of the 
computed quantities: (i) the mean square error (MSE) 
under null hypothesis (i.e. independence between two 
signals), which could be interpreted as bias, defined by 

( ){ }2

0 0
ˆE θ θ−  where E is the mathematical 

expectation, 0 0θ =  and 0̂θ  is the estimation of 0θ ; (ii) 
the mean variance (MV) computed over all values of the 

coupling degree and defined as ( )( ){ }2
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1 ˆ ˆ
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i i
i

E E
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θ θ
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where I is number of coupling degree points and îθ  is 
the estimated relationship for the coupling degree Ci ; 
(iii) in addition to two above criteria we devised the 
median of local relative sensitivity (MLRS) as a 
comparison criterion, it is given by: 
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where  is the increase rate of the estimated 
relationship and 

iS

iσ  is the average of estimated standard 
deviations associated to two adjacent values of the 
coupling degree. This quantity is a reflection of the 
sensitivity of a method with respect to the change in the 
coupling degree. We have also retained the median of 
the distribution of local relative sensitivity instead of its 
mean because the fluctuation in its estimation may make 
this distribution very skewed. Unlike MSE and MV, the 
higher MLRS values indicate the better performances. 

For all models and all values of coupling degree, 
Monte Carlo simulations were conducted to compare 
interdependence measures provided by aforementioned 
methods. Each time-series was generated over 20000 
samples duration. All estimations were computed in a 
sliding window (512 points, i.e. 2 seconds as signals 
sampled at 256 Hz). The overlapping of sliding 
windows was set to 98%. 
 
Results 
 

Tables 1 to 3 represent respectively the MSE under 
null hypothesis, the MV and the MRLS for all methods 
and simulation models. For each studied situation the 
best method is highlighted with gray color. Methods 
that were found to be insensitive with respect to changes 
in the coupling degree are denoted by symbol "*". From 

these tables, we deduced that for model M1, R² is the 
most appropriate estimator based on defined criteria. 
For model M2 , in the case of phase relationship, PS 
methods (especially WE) perform better than other 
methods. In the case of amplitude relationship, there is 
no consensus for the choice of a best method as all 
methods are more sensitive to the phase of signals than 
to their envelope. For the coupled Rössler systems 
(M3), PS methods are more suitable. For Hénon coupled 
systems, S and N methods had higher performances, on 
average but R² was found to be more robust in the 
presence of added noise. For the neuronal population 
model, in the background activity situation, R² and h² 
methods detected the presence of a relationship and 
performed better than other methods; this tendency was 
also confirmed in the spiking activity situation. 
However, it was difficult to determine the overall best 
method in this second case since criteria did not lead to 
converging results. 

To be short, as an example, only curves obtained for 
model M4 are presented here. The signals generated by 
this model are very close to those reported in a previous 
attempt for comparing relationship estimators [17]. In 
this study, the relationship between two neuronal 
populations is unidirectional. 

For the spiking activity (M4 (SPK)) results for all 
methods are reported in figure 1 (a)-(c). As an 
interesting result, we observed that WE and CF methods 
are almost blind to the established relation. Similarly, 
HE and WR only displayed small increase with 
increasing of degree of coupling but their variance was 
low. R², h², S and HR methods exhibited good 
sensitivity. However, MSE under null hypothesis was 
found to be high for HR. For background activity 
(M4 (BKG)), results showed that increasing the degree 
of coupling between neuronal population did not lead to 
significant increase of computed quantities, as shown in 
figure 1 (d)-(f). In this situation CF and PS methods but 
HR do not detect any relationship and the other methods 
detect a weak relationship. 
 
Table 1: MSE for Different Methods and Models. Best 
method highlighted with gray color and "*" stands for 
insensitive method with respect to changes in the 
coupling degree 
 

 M1 M2 M3 M4(SPK) M4(BKG) 
R² 0.0001 0.0764 0.1095 0.0632 0.0015 
CF 0.1045 0.1082 0.0914 * * 
h² 0.0010 0.1174 0.1511 0.1038 0.0060 

HE 0.0050 0.0231 0.0638 0.0287 * 
HR 0.0030 0.1756 0.4731 0.2493 0.0190 
WE 0.0105 0.0205 0.0765 * * 
WR 0.0088 0.1136 0.1615 0.0534 * 

S 0.0753 0.0284 0.0266 0.1075 0.1200 
H 0.0004 2.2281 0.4420 0.6512 0.0042 
N 0.0004 0.3782 0.1168 0.2015 0.0049 
SL 0.0043 0.1152 0.0085 0.0413 0.0062 
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 Table 2: MV for Different Methods and Models. Best method highlighted with gray color and "*" stands for insensitive 
method with respect to changes in the coupling degree 

 M1 M2 (PR) M2 (AR) M3 M4(SPK) M4(BKG) 
R² 0.0040 0.0200 0.0367 0.0065 0.0216 0.0021 
CF 0.0055 0.0014 * 0.0200 * * 
h² 0.0040 0.0160 0.0275 0.0060 0.0205 0.0022 

HE 0.0026 0.0057 * 0.0019 0.0045 * 
HR 0.0096 0.0207 * 0.0010 0.0217 0.0066 
WE 0.0016 0.0029 * 0.0006 * * 
WR 0.0066 0.0119 * 0.0018 0.0038 * 

S 0.0031 0.0058 0.0075 0.0049 0.0184 0.0044 
H 0.0107 0.2033 0.2441 0.3408 0.2942 0.0071 
N 0.0055 0.0120 0.0142 0.0068 0.0501 0.0060 
SL 0.0492 0.0250 0.0209 0.0254 0.0384 0.0059 

 
Table 3: MLRS for Different Methods and Models. Best method highlighted with gray color and "*" stands for 
insensitive method with respect to changes in the coupling degree 

 M1 M2 (PR) M2 (AR) M3 M4(SPK) M4(BKG) 
R² 57.6 3.94 0.41 1.38 0.0013 0.00012 
CF 56.4 1.30 * 2.20 * * 
h² 35.6 4.06 0.36 0.98 0.0018 0.00011 

HE 40.9 6.58 * 15.5 0.0012 * 
HR 42.5 6.5 * 8.87 0.0012 0.00007 
WE 47.0 6.69 * 13.8 * * 
WR 46.6 6.76 0.08 8.83 0.0012 * 

S 31.1 2.23 0.84 6.91 0.0009 5e-6 
H 30.3 2.84 0.77 3.53 0.0007 9e-5 
N 29.0 3.02 0.60 3.46 0.0004 9e-5 
SL 8.32 0.772 0.41 3.52 0.0013 7e-7 
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Figure 1: Results obtained for M4 (neuronal population 
model). (a) A pairs of signals generated by model 
M4 (SPK) (b) Estimated relationship, and (c) variances 
of estimation, as a function of coupling degree, 
estimated for all methods using Monte-Carlo simulation 
in the spiking activity. (d)-(f) Results obtained for the 
case of background activity . 

 
Conclusions 
 

In this work, we have compared the performances of 
some widely used estimators of statistical coupling for 
characterizing the interaction between brain structures. 
Three statistical criteria of performance were computed 
using sufficiently large simulated data. 

To sum up we can say the evaluation of signal 
interdependencies is not straightforward. Generally 
speaking, there is no "best" method. Results are 
sensitive to assumptions about processes involved in the 
generation of analyzed signals. It appears that the most 
common estimators R² and h² perform more or less well 
in all situations. Therefore, they should be used as the 
first tools towards the characterization of signal 
interdependencies before applying other methods.  
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