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Abstract: The capabilities of three dynamic Bayesian 
network methods to infer latent biological actions 
have been evaluated in this work by biologically 
reasonable synthesised data. The results show that 
performances of DBNs methods are proportional to 
sample size and VBEM method is more stable than 
MAPEM and SO-LDS methods. Furthermore, five 
replicates would be sufficient to achieve a stable 
performance.  
 
Introduction 
 

There has been growing interest in inferring genetic 
regulatory networks based on microarray data recently. 
One of the most promising methodologies is Dynamic 
Bayesian network (DBN), which has been adopted by 
several previous works [1, 2, 3, 4, 6, 7] for 
reconstruction of genetic networks from time-series 
data.  DBNs have the great capability of taking into 
account the influence of latent variables while 
estimating the gene-gene interactions. The latent 
variables are any unobservable factors contributing to 
the observed gene expressions.  Nevertheless, since only 
a small number of replications (e.g., less than 4) and a 
limited amount of time points are available in practice, 
estimation of model parameters in a DBN may not be 
robust and reliable statistically.  

This study aims to evaluate the effect of sample size 
and normality assumption on the performance of three 
DBNs. The sample size is defined as the product of the 
number of replications and the number of time points in 
each replication in a microarray study.  Two DBNs 
considered in this study are proposed by Rangel et al. 
[2] and Beal et al. [3], using the same dynamic system 
structure to infer genetic behavior but different learning 
strategies.  While the former is based on Expectation-
Maximization (EM) algorithm plus bootstrap approach, 
which is called MAPEM for convenience, the latter is 
rooted on Variational Bayesian Expectation-
Maximization (VBEM) algorithm. The third DBN 
evaluated is proposed by Perrin et al. [6], called SO-
LDS thereinafter, which describes genetic regulation by 
second order differential model. The model combines 
two genetic behavior parameters, which are absorption 
coefficients and natural frequency, to describe genetic 
temporal activities. It may be considered as a dynamic 
Bayesian network based on non-input state-space model. 
The common feature of these three methods is that they 

all can be accomplished by Kalman Filter and Kalman 
smoother process.  
 
Materials and Methods 
 

Bayesian network is one of the graphical models, 
which can elucidate both causal and diagnostic 
reasoning problems. As shown in Figures 1(a) and 1(b), 
a graphical model is defined by a structure, denoted as 
M, which comprises a set of nodes, },...,,{ 21 nXXX=ν , 
representing different variables, and a set of edges, 

)},(),,(),,(),,{( 53423231 XXXXXXXX=ε , indicating the 
“cause-effect” relationship of two variables. A Bayesian 
network is a directed acyclic graph, showed as Figure 
1(a).  

 
Figure 1:   Examples of graphical models 

 
To model biological systems, in a graph, nodes 

represent biological expressions (i.e., gene expression 
level), assuming all nodes are continuous variables 
subject to an underlying distribution and independent of 
one another. Edges indicate interaction of two biological 
molecular compounds, which can be assessed by some 
quantitative technologies, e.g. microarray. The joint 
probability of a structure under first Markov assumption 
may be expressed as equation (1),  

 

∏=
i

iin pXpXXp )|(),...,( 1
 

(1) 

where ip  indicate the parent of iX . Static Bayesian 
networks can not describe the recurrent or cyclic 
structure such as Figure 1(b). However, dynamic 
Bayesian networks can overcome this deficiency and 
may model causal relation with time lags. Rangel et al. 
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 [2] and Beal et al. [3] expressed DBN models by input 
dependent State-Space model (2), abbreviated as SS 
model thereinafter, and the system dynamic structure is 
illustrated in Figure 2. The ‘gene-gene’ interactions 
matrix, that is DCB + matrix, is then found by 
MAPEM and VBEM algorithm, respectively. 

 

 
Figure 2: input-dependent SS model. 
 
    In Equation (2), tx  is a hidden state vector, e.g. 
unobserved molecular expressions, t time index, ty  an 
observation vector, e.g. observed gene expressions, and 

tu  an input vector. The random vector tw  represents 
zero-mean Gaussian noise with covariance Q. The 
random vector tv  stands for zero-mean Gaussian noise 
with covariance R of observation. The parameters A, B, 
C, D, are referred as state dynamic, input-to-state, 
observation and input-to-observation matrices, 
respectively. All parameters mentioned above are 
collected by a parameter vector },,,,,{ RQDCBA=θ . 
By first-order Markov assumption the complete data 
joint likelihood of }{ :1 TY  based on state-space model (2) 
is given by 

∏
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where )|( 1−tt xxp  denotes the probability of dynamic 
state transitions , )|( tt xyp  the probability of hidden 
state tx  generating observation ty  at time t , )|( tt uxp  
and )|( tt uyp  probability of hidden state and 
observation conditioned on input tu , respectively. The 
joint log-likelihood of Equation (3) can express as 
Equation (4). 
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The parameters in SS model (2) may be estimated by 
the forward-backward recursive algorithm, i.e. Kalman 
Filter and Kalman smoother coupled-process, presented 
in [5]. The former computes expectation of tx  given 

}{ :1 tY , i.e., }]{|[ :1tt YxE  and the latter calculates 

expectation of the state posterior given whole 
observations, i.e. }]{|[ :1Tt YxE . The EM algorithm iterates 
E step and M step to find the most fit for the data 
parameters of Equation (2). Rangel et al. [2] applied 
boostrap analysis to find the confidence intervals of θ 
and determined the state dimension by cross-validation 
to aviod the over-fitting and under-fitting problems. 
Instead of maximizing the expectation of log-likehood 
equation (3), Beal et al. [3] maximized the marginal 
likelihood defined in  Equation (5). 
 

∫= dxdmxypmyp θθ )|,,()|(  (5) 

 
In E step and M step of VBEM algorithm, it finds the 
state distribution         and parameters distribution           
, as shown in Equations (6) and (7), respectively. 
 
VB-E step 
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Perrin et al. [6] described gene regulation model 

based on a deterministic inertial model (8), 
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where i, j are gene indices. Ei(t) is the gene expression 
level of gene i. iλ  indicates an absorption coefficient 
specific to gene i while iω  acts as a natural frequency of 
gene i. The model is basically a linear dynamic system 
and can be viewed as a dynamic Bayesian network 
based on non-input dependent state-space model and 
can be solved by an EM algorithm.

  
 

 
Figure 3: noninput-dependent SSM 
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 Based on the structure defined in figure 4, we have 
synthesized biologically reasonable data with different 
numbers of time points and data sets by Monte Carlo 
simulations. In figure 4, F’s represent unobserved 
factors that affect the other genes, which are considered 
as latent variables (also known as hidden variables in 
other studies). The ability of gene reconstructions from 
limited data is rarely discussed in previous studies [[1, 
2, 3, 4, 6], which will be evaluated in this work. 
 
 

 
Figure 4: Functional structure of simulation data 
 
 
Results 
 

Tables 1 and 2 display evaluation results of the three 
DBN methods with various sample sizes, for which the 
data are assumed to normal-distributed and Gamma-
distributed, respectively. The results show that the 
performances of three DBNs methods are proportional 
to the sample size, which is defined as the product of the 
number of time points (T) and the number of data sets 
(S). All three methods have poor performances with 
small sample sizes. To investigate the effects of the data 
sets and time points on DBNs methods, Figures 5 to 7 
illustrate the performances of fixing time points to T=20 
while varying S from 1 to 25. The results show that just 
five data sets are almost enough to achieve the average 
performance, the accuracies of which are 0.82 and 0.61 
for VBEM and MAPEM, respectively. Instead of fixing 
the number of time points, Figures 8 to 10 illustrate the 
performance for a fixed S (=5) with T=10 to 200. The 
results show that average accuracy of VBEM is about  
0.85 and that of MAPEM is about 0.6.  Generally 
speaking, VBEM is more stable than MAPEM as either 
T or S varies. 
 
Discussion 
 
While it has been claimed that the latent variables can 
be estimated or at least taken into account by the DBNs 
in reconstructing gene networks, this ability has never 
been studied extensively before.  For different sample 
sizes, the simulation results show that the VBEM 
performs best among the three DBNs for both Normal-
distributed and Gamma-distributed data. When either 
the number of time points or the number of data sets is 
fixed, the VBEM is still more robust than the MAPEM. 
The SO-LDS seems to be the worst among the three 

DBNs.  One of the possible reasons for this poor 
performance may be because the second-order model 
does not match the simulated data. 

 
Table 1: Performances for the three DBNs with Normal-
distributed data. 
 

Sample size 250 200 100 50 25 20 
Sen. 0.876 0.870 0.752 0.711 0.594 0.594
Spe. 0.912 0.874 0.841 0.796 0.767 0.767VBEM 
Acc. 0.9 0.872 0.810 0.766 0.706 0.706

       
Sen. 0.647 0.352 0.117 1 0.058 1 
Spe. 0.483 0.871 0.903 0 1 0 

MAPEM

Acc. 0.541 0.687 0.625 0.354 0.666 0.354
       

Sen. 1 1 1 1 1 1 
Spe. 0 0 0 0 0 0 

SO-LDS

Acc. 0.354 0.354 0.354 0.354 0.354 0.354
 
Table 2: Performances for the three DBNs with 
Gamma-distributed data. 
 

Sample size 250 200 100 50 25 20 
Sen. 0.941 0.941 0.823 0.705 0.647 0.470
Spe. 0.903 0.741 0.838 0.935 0.677 0.774VBEM 
Acc. 0.916 0.812 0.833 0.854 0.666 0.666

       
Sen. 0.352 0.294 0.176 0.117 0 1.000
Spe. 0.838 0.806 0.774 0.903 1 0 

MAPEM

Acc. 0.666 0.625 0.562 0.625 0.645 0.354
       

Sen. 0.235 0.529 0.235 0.117 1 1 
Spe. 0.580 0.387 0.516 0.709 0 0 

SO-LDS

Acc. 0.458 0.437 0.416 0.500 0.354 0.352
 
 

 
Figure 5: Accuracy with different numbers of data sets 
for VBEM and MAPEM 
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Figure 6: Sensitivity with different numbers of data sets 
for VBEM and MAPEM 
 
 
 

 
Figure 7: Specificity with different numbers of data sets 
for VBEM and MAPEM 
 
 
 

 
Figure 8: Accuracy with different numbers of time 
points for VBEM and MAPEM 
 
 
 

 
Figure 9: Sensitivity with different numbers of time 
points for VBEM and MAPEM 
 
 
 

 
Figure 10: Specificity with different numbers of time 
points for VBEM and MAPEM 
 
Conclusions 
 

In this study, we have evaluated three DBNs based 
on simulation data.  Different sample sizes and different 
data distributions have been considered.  Although it is 
not shown in the result section, incorporating a correct 
number of latent variables is indeed a crucial step 
toward a better estimation of gene-gene interaction. The 
simulation results suggest that VBEM is the best among 
these three DBNs.  Nevertheless, this evaluation is by 
no means complete because only one network has been 
simulated.  Moreover, only linear gene-gene relation has 
been simulated, which is not necessarily the case in true 
biological systems.  
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