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Abstract: Optical tracking system is described for 
medical application, where the used medical tool is 
equipped with special marks. The position and 
orientation of the tool is measured based on different 
views from the cameras. An example of 3D free-hand 
ultrasound is presented, where the multi-camera 
system is used for ultrasound probe localization. The 
resolution of two-camera system is evaluated for the 
specific geometric arrangement of the cameras as 
well as the simple marker recognition algorithm is 
described. 
 
Introduction 
 

Tracking of medical tool movements is one of the 
major tasks in number of medical application. There are 
different methods how this tracking may be performed. 
Common tracking systems use magnetic or ultrasonic 
trackers as well as mechanical devices. The drawbacks 
of these systems are their principles of work. Typically, 
the user has to be linked to a measurement instrument, 
either by cable or by a mechanical linkage, which is 
more restraining for the user. Furthermore, while 
mechanical tracking systems are extremely precise, 
magnetic and acoustic tracking systems suffer from 
different sources of distortions. For this reason, an 
optical tracking is an alternative solution which 
overcomes many of the drawbacks of conventional 
tracking systems. 
 
Materials and Methods 
 

This work is focused on optical tracking with 
cameras providing position determination for medical 
application in the case, when there is always a free line 
of sight between the markers and cameras. The optical 
tracker does not involve any magnetic field for 
determination of position data and consequently does 
not permit any deformation of these data in the presence 
of metallic structures. Their principle is based on the 
analysis of 2-dimensional projections of image features 
received by CCD cameras. 

The 3D Free-hand ultrasound is one of the 
applications of optical tracking, where conventional 2D 
diagnostic ultrasound machines are extended with 
ultrasound probe localization. 

As the clinician moves the probe, its position and 
orientation are recorded as well as the 2D ultrasound 
image slices [2]. The camera system localizes the tip of 
the ultrasound probe by tracking the motion of markers 

that are mounted on the body of the device. The 2D 
slices, together with the information about their 
positions and orientations, constitute an irregularly 
sampled 3D dataset describing the volume scanned by 
the clinician. Afterwards the geometry of complex three 
dimensional anatomies is visualized (Figure 1). 

 

 
 
Figure 1: 3D Free-hand ultrasound image reconstruction  
 

Before the camera system can be used to track 
markers (mounted on medical tool), the system first 
needs to be calibrated. This is done by placing a 
calibration frame in front of the cameras and by running 
the calibration software on the computer. Several 
methods for camera calibration are presented in the 
literature. We have used Matlab toolbox for performing 
calibration procedure based on direct linear 
transformation (DLT). This mathematical model was 
used in order to calculating intrinsic (focal length, 
location of the image center, effective pixel size, 
distortion coefficient of the lens) and extrinsic (rotation 
matrix, translation vector) camera parameters. 
 
Camera calibration  

 
The goal of camera calibration is to compute the 

components of some matrix M that represents how some 
known 3D points are transformed to 2D image plane. 

If we have homogenous coordinates of n object 
points and we know their images under the projective 
transformation, which is represented by a matrix M, we 
can write the following equation for all of these points 

 
[ ] [ ]1,,,,, 214321 iiiiii bbaaaa =M  (1) 

 
With merging these equations, we obtain a system of 

linear equations from which we can retrieve M. 
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which we write 
 

BAM =  (3) 
 
We can retrieve M by multiplying both sides of the 

equation by left inverse (The matrix (ATA)-1AT is a left 
inverse of A) so that 

 

( ) BAAAM TT 1−
=  (4) 

 
If n ≥ 6 (at least six corresponding points are 

known), this system is overdetermined and we can 
seek the best possible solution in the sense of least 
squares. The result gives us the matrix M, called as 
projection matrix. The projection matrix M is 
composed from matrices K, R and vector t 

 
[ ]KRtKRM −=  (5) 

 
where K is called the camera calibration matrix (the 

coefficients of this matrix are so called intrinsic 
parameters of the camera), R is called rotation matrix (it 
expresses three elementary rotations of the camera) and 
t is the translation vector giving three elements of the 
translation of the origin of the world-coordinate system 
with respect to the camera coordinate system. 

Note: The delimiter | in equation (5) denotes that the 
matrix is composed of two submatrices. 

The calibration matrix K is upper triangular 
containing five constants of the camera focal distance, 
principal point coordinates in the image, scaling and the 
degree of skew of the coordinate axes in the image 
plane [1].  

The rotation matrix R is orthogonal and contains 
constants expressing rotations along the axes x, y and z 
also called as pan, tilt and roll, respectively. 

 
The list of intrinsic parameters:  
• f – Focal distance.  
• [U0x, U0y] – Principal point coordinates, sometimes 

called the center of the image in camera calibration 
procedures. It is the intersection of the optical axis 
with the image plane. 

• θ – Skew coefficient: The skew coefficient defining 
the angle between the x and y pixel axes.  

• k – Scaling: The image scaling coefficients (radial 
and tangential distortions).  
 

The list of external parameters:  
• Rotations of the cameras. 
• Translations of the cameras 

 

The spatial configuration of the two cameras and 
the calibration planes is displayed in a form of 3D plot: 
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Figure 2: The spatial configuration of two cameras 

 
Above we assumed ideal central projection, as a 

pinhole camera does, but in the case of real camera, the 
lens of the camera performs distortion. A typical lens 
performs distortion of several pixels which a human 
observer does not notice looking at a general scene. 
However, when the image is used for measurements, 
compensation for the distortion is necessary. 

Let P be a point in 3D space having coordinates 
[XP; YP; ZP] in the camera reference frame. The 
normalized coordinates of this point is than [xn; yn] = 
[XP/ZP; YP/ZP]. 

Considering lens distortion, the new normalized 
coordinates are defined as follows: 
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where r2 = x2 – y2 and dt is the tangential distortion 

vector: 
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Vector k = [k1, k2, k3, k4, k5] contains both radial and 

tangential distortion coefficients. The tangential 
distortion is due to imperfect centering of the lens 
components and other manufacturing defects in a 
compound lens. This distortion model was first 
introduced by Brown in 1966 [2]. 

For non wide-angle cameras, it is often not 
necessary to count with the radial component of 
distortion model beyond the 4th order (i.e. k5 = 0). In 
distortion model used e.g. by Zhang [4] the last three 
distortion coefficients are set to zero. There is used 4th 
order distortion model with no tangential component. 

 
Marker recognition and computation its position 
 

The tested marker recognition algorithm consists of 
several steps. The first step is 2D cross correlation on 
the image using a pre-defined mask. Its output is a 
series of threshold points, which may be part of 
markers. The next step is to group these points and to 
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 calculate the centroids of the markers. This gives a 
series of coordinate pares of possible markers.  

There are two elementary ways of doing the cross 
correlation: time-domain cross correlation and 
frequency domain cross correlation. The first one 
requires a suitable mask, which design is crucial in the 
effectiveness of the marker recognition algorithm. 
When the mask is correlated with an image of a marker, 
the cross correlation value should generate a peak. The 
cross correlation is done on each pixel in the search area 
using the following equation: 
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where R(h,k) is the correlation value of the image point 
with coordinates (h,k) inside the search area, M is the 
mask, L is the area of the image which must be 
correlated with the mask and l is the size of the mask. 
When we assume that multiplication and summation 
operations take the same processor clock cycles, then 
the computation complexity of this method is 2L2M2 [7]. 

The second way of doing the cross correlation is the 
frequency domain cross correlation. A 2D FFT 
algorithm is first used to convert the search area to the 
frequency domain. This result is then multiplied by the 
2D FFT of the mask. The 2D FFT of the mask is only 
done once, as it would not change. The product of the 
two FFTs is then converted back to the time-domain 
using a 2D IFFT algorithm. The computational 
complexity of the frequency domain cross correlation 
algorithm is N2(20log2N+6), where N is the size of FFT 
(N >L+M) [7]. The advantage of the frequency domain 
method is that the number of calculations stays 
considerably the same for different sizes of search areas 
and mask sizes. The major drawback of this method is 
that it uses significantly more memory than the time 
domain method. Furthermore it is no as flexible as the 
time domain method. 

When a cross correlation algorithm of a point has 
been calculated, it is necessary to see if that point is an 
overthresholded point. The N highest value 
overthreshold points are stored in a sorted list, which is 
steadily updated as a new correlation value is known. 
After the cross correlation process if finished, the 
overthresholded points must be processed. They are 
grouped into islands and each island is a possible 
marker. The algorithm considers points to belong to the 
same island if they touch each other. After an island of 
points has been isolated, centroid calculations must be 
made in that data to determine the position of the 
possible marker. The centroid of the island is calculated 
by calculating the centre of mass of the correlation 
values of the points. The following equations are used: 
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where W is the total weight of the island, (xc,yc) is the 
centroid coordinates of the island, Rij is the correlation 

value of the thresholded point with coordinates (xi,yj). 
The results of the centroid calculations of each island 
are saved for further processing. An island with a heavy 
weight has a bigger chance of being a marker than an 
island with a light weight. After all the markers have 
been recognised and their coordinates are known, the 
markers should be classified. Classification depends on 
the used configuration of markers (depending on 
application) and is therefore not discussed here. 
 
Camera system resolution  
 

The resolution of the camera system is defined as the 
smallest change that can be detected by a sensor (in our 
case, by a CCD sensor inside the camera). Suppose two 
cameras in geometry as Figure 3 shows. When 
investigated points (markers) are not only on the plane 
perpendicular to the optical axes, but in 3D space, the 
derivation of the camera system resolution is a complex 
task. Also suppose next simplifications: the cameras are 
equally far from the investigated point; they are not 
turned around their optical axes, and the angle between 
them (between their optical axes) is γ . 

 

 
 

Figure 3: The configuration of cameras 
 

When the investigated point is lying somewhere on 
the plane given by the two camera optical axes, then the 
maximum possible movement in the scene without 
being observed is e. 

 
( ) 2180cos2222 γ−−++= yxzyx ddddde  (10) 

 
for γ ∈(0; 90), where dx, dy, dz are dimensions of 3D 
segment in the distance l1 and l2 from the cameras 
determining a space where the point can move without 
being observed. The half of the diagonal of this segment 
is defined as e [4]. 

An example how the error e is depending on the 
angle between cameras γ shows Figure 4. Note: the 
investigated point (point A) is lying on the intersection 
of optical axes. The angle γ is changing between 0° 
(when the camera optical axes are parallel) and 180° 
(when the cameras are looking against each other). 
Obviously, these two extremes will cause largest error 
(∞), where we cannot define the exact position of the 
point at all. The minimum error could be when the 
cameras are perpendicular to each other (γ = 90°) in the 
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 point A. In other points this error will be naturally 
changed, because distances l1 and l2 will change. 

 

 
 

Figure 4: The function of e, when the distances from the 
cameras to the investigated point are fixed and only the 
angle between them γ is changing 
 
Results and discussion 
 

First experimental results are presented in this paper, 
where the resolution analysis of camera system due to 
finite number of sensing elements inside the cameras, 
focal distance and their location against the investigated 
point is shown. The possible error is the minimum when 
the camera positions are fixed and the angle between 
them is 90°. 

The effect of distortions on the pixel image and the 
radial component versus the tangential component of 
distortion is visualized with arrows spread all in the 
image area, where each arrow represents the effective 
displacement of a pixel induced by the lens distortion. 
The cross indicates the center of the image, and the 
circle the location of the principal point. 

 

 
 

Figure 5: Distortion model of the camera 
 
Two identical monochrome FireWire cameras were 

tested with the following features: 640 x 480 pixel 
resolution, up to 30 images/s, 1/4" CCD progressive 
scan. The parameters of lenses: H 2616 FICS – 3 
Computar C/CS-Mount Standard Lenses with 2.6 mm 
focal length, 1.6 – 11 iris range, 128° horizontal angle 
of view. If both cameras are positioned 1m from the 
investigated point the possible error is 3 mm, but this 
value can be reduced by additional image processing. 

The calibration results for both (left and right) 
cameras are summarized in the following table. 

 
Table 1: Left and right camera calibration parameters 

 
Intrinsic parameters of left camera 

Focal Length 2.6 mm 

Principal point [359.08   252.86 ] 

Distortion coefficients [-0.284   0.099   -0.001   -0.0006  0 ] 

Intrinsic parameters of right camera 

Focal Length 2.6 mm 

Principal point [320.86   259.99 ] 

Distortion coefficients [-0.29   0.108   -0.0004   0.001  0 ] 
Extrinsic parameters (position of right camera with respect to left 
camera) 

Rotation vector [0.027   -1.585  -0.028 ] 

Translation vector [421.00   -6.26  512.75 ] 
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