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Abstract: Large 2D high-resolution color images were
acquired from wide-field optical microscope. The
specimen was from the field of pathology of tissues.
Each large image was obtained by stitching from
a grid of smaller images. Separate acquisitions re-
quired registration and stitching of adjacent images.
The novel use of special order for registration allows
for easy processing of images with solely background.
The order is determined from graph representation
based on the grid. In this way, a reliable registration
confidence test could be provided. The final large im-
age was composed by stream stitching process because
of imposed memory limitations. The stitches between
adjacent images themselves were hidden by meander-
ing technique. The methodology is described and sev-
eral aspects are discussed in this paper. Our experi-
ence, gained from practical application of our system
in the department of tissue pathology, supports the
claim that the system is robust, fast and accurate.

Introduction

Digital microphotography becomes more and more
popular in pathology of tissues. One of few enhancements
we gain from transition into digital world is the possibil-
ity to acquirelarge 2D images at high resolution. Such
big images can be annotated and stored into a database
as reference images. High-detailed reference images can
be used, for instance, when examining another data, for
teaching purposes or even in tele-pathology.

We were acquiring high-resolution 2D color images
from optical microscope by composing smaller images
(fields) of specimen. This solution enables us to acquire
every field at the limits of given optical setup, namely
at high magnification and resolution possible. The fields
were arranged into an orthogonal grid spreading over the
entire region of interest of a given specimen.

Nevertheless, high lateral resolution of attached CCD
camera is better than the resolution of the movement of
mounting stage. This and the mechanical matter of step-
per motors implies that the lateral movement of specimen
is not described sufficiently at the resolution of fields (im-
ages). Adjacent fields were therefore acquired with small
overlap providing information for correct alignment of
fields.

Another issues stem from the thickness of specimen

and from the almost-perpendicularity of specimen plane.
The system had to refocus on every field. Due to this and
the imperfection of optics, the overlaps of adjacent fields
were not exactly identical and some smoothing had to be
performed while stitching fields.

The registration was even more complicated because
of the structure of specimen. There were fields displaying
solely background due to a hole in the specimen or non-
convex shape of it. Determining the correct alignment of
such fields is hardly possible even for operating personal.

Last, but not least, constraint required a really large
mosaicked image (e.g. more than 1GB) to be created us-
ing a computer with much less of physical memory (e.g.
0.5GB).

Materials and Methods

The specimen samples were mounted on a 2D mov-
ing stage (M̈arzḧauser, Germany) and acquired with CCD
Nikon DXM 1200 camera (Nikon, USA), microscope Le-
ica DMLB (Leica, Germany) with 10x to 100x objectives
(lens HC PIApo 10/0.4, HC PIApo 20/0.7, HCX PIApo
40/0.85 CORR and HCX PIApo 100/1.35 Oil Imm). The
system is driven by Lucia DI software (Laboratory Imag-
ing, Czech Republic). Fields, comprising a grid, are ac-
quired row by row, each odd row from left to right while
each even row from right to left — a meandering scan.

Lucia DI software refocused at each particular field.
Sometimes to get a sharp picture, a stack of images was
acquired in which each image was focused at different
distance. Montage from focused parts of images from 3D
stack was conducted resulting in 2D sharp field.

Thus, grid coordinate of each field was known. All
fields had the same dimension, typically1232×972pix-
els, and all were in24-bit colors. Adjacent fields were
acquired with overlap, typically 5–10 percent of the field
dimensions.

After the acquisition, all fields were stored into sep-
arate files and ready for further three-step processing.
The goal was to determine a good order for processing
of fields as well as to register adjacent fields resulting in
global pixel coordinates attached to every field. Coordi-
nates were then used in the final third step where sort of
stream stitching process was creating final large image.

Let us denote a setIm to be the set of all fields and
Sur[i], i ∈ Im, to be the set of all adjacent fields, i.e. fields
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 that are, if they exist, to the left, top, right and bottom
relative to the given fieldi. A set of pixel coordinates, in
the coordinate system of fieldi, of a part corresponding
to overlap between fieldsi and j is designated asparti→ j .
Coordinates of the most right pixel line and the most bot-
tom pixel line are excluded from the set for the sake of
equation (2). Pixel value of fieldi at coordinate(x,y) will
be pi(x,y).

Boundarypartsof every field were converted into8-
bit grayscale and stored into computer memory. Apart
is actually an edge of a boundary frame of an image. It
is slightly wider than the overlap that was used during
acquisition of individual fields. It was expected that every
part contained the real overlap. Some parts are outlined in
Figure 1 by dashed lines.

X R

Y

i ∈ Im

j ∈ Sur[i]

Figure 1: Parts and possible alignments

The registration order is established from weighted
graph representation(Im,Mes) of the grid. Vertices of
the grid are fields themselves, the setIm. Edges are just
between two adjacent vertices (fields). The weight of ev-
ery edge is described byMes[i ↔ j],∀i ∈ Im,∀ j ∈ Sur[i].
Modified Prim algorithm for finding maximum spanning
tree is used, Figure 2. It is the order, in which fields are

(1) for ∀i ∈ Im doPr[i] := 0 andVal[i] :=−∞
(2) i′ := maxi∈Im

(
∑ j∈Sur[i] Mes[i ↔ j]

)
(3) while∃i ∈ Im : Pr[i] = 0 do
(4) for ∀ j ∈ Sur[i′] : Pr[ j] = 0∧Val[ j] < Mes[i ↔ j]

doVal[ j] := Mes[i ↔ j]
(5) Pr[i′] := 1, PRINT(i′)
(6) i′ := maxi∈Im:Pr[i]=0(Val[i])
(7) end while

Figure 2: Modified Prim algorithm

printed in the given algorithm (step (5)), that is used for
fields registration and computation of global pixel coor-
dinates. The weight is given by equations (1) and (2):

Mes[i ↔ j] = Mes[i → j]+Mes[ j → i], (1)

Mes[i → j] = ∑
(x,y)∈parti→ j

|pi(x,y)− pi(x+1,y)|+

∑
(x,y)∈parti→ j

|pi(x,y)− pi(x,y+1)| . (2)

The correct alignment of two adjacent fields was
established by voxel-based registration methods [1, 2].
These methods test all reasonable alignments, theX×Y
area in Figure 1, and evaluate each of them. The best
alignment should have the highest evaluation. In our im-
plementation, the search for translation of corresponding
parts was just enough. The result of registration was a
two-elements vector, thick arrow in Figure 1, estimating
the best alignment of two adjacent fields.

Two default vectors were maintained, one for hori-
zontal and one for vertical alignments. The very first reg-
istration in given direction determined the default vector
for that direction. Every consecutive successful registra-
tion in the same direction improved the respective de-
fault vector. Improvement was done via re-averaging so
far computed successful registration vectors in given di-
rection. Registration was considered successful whenever
the found registration vector did not differ more than 10
pixels from default vector in some of its elements. Oth-
erwise, the found vector was ignored, default vector was
supplied and no improvement was calculated.

Searching the alignment space was reduced by two
optimization techniques. The very first search in given
direction was improved usingn-step optimization tech-
nique. First, this technique tests everyn-th alignment
among all from those inX×Y. Then, it searches every
(n/2)-th alignment in an×n surroundings of the, so far,
highest evaluated alignment. The last step repeats with
n := n/2 and ends whenn= 1. After the default vector for
given direction was established, every consecutive search
was optimized using gradient ascend technique. In this
case, the search starts with the default vector. Neighbor-
ing vectors are examined and the highest one is selected
for the next iteration. The iteration stops whenever no bet-
ter alignment is around.

Global coordinates of the top left corner of every
field i ∈ Im were determined immediately when align-
ment vectors betweeni and all j ∈ Sur[i] were computed.
The global coordinate(0,0) was in the top left corner of
the fieldi′ determined in the step (2). The modified Prim
algorithm (Figure 2) ensures the property that whenever
global coordinate ofi is being computed, there exists at
least one field fromSur[i] that has its global coordinate
already established allowing to set the global coordinate
of i in this way.

Global coordinates of every top left corner were used
when creating final large image. The original24-bit color
images (fields) were loaded into memory from a given
grid line and stitched together according to associated
global coordinates. The first two grid lines were assem-
bled separately and stitched together. Then, as much as
possible pixel lines were stored into the output image file
(and removed from memory). The third grid line was as-
sembled and stitched with the rest of the first two grid
lines. The process was repeated by storing as much pixel
lines as possible and proceeding with next grid line until
all grid lines are processed.

A smooth transition within an overlap was utilized.
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 Horizontal transition between fields occurred when as-
sembling a grid line and vertical transition occurred when
stitching two grid lines. Transition was implemented as
weighted sum of both intensities of corresponding pix-
els. The weights were controlled by two continuous func-
tions: one was smoothly lowering influence of image data
while another was raising influence of the counterpart im-
age data.

Results

We have tested five registration methods, namely the
stochastic sign change (SSC), the sum of absolute valued
differences (SAVD) [1], the normalized cross-correlation
coefficient (NCC) [1, 3, 4], the correlation ratio (CR)
[5, 6] and mutual information [7, 8]. Two versions for
estimation of underlying pixel intensity probability den-
sities in mutual information method were tested: estima-
tion from joint histogram (MIh) [9] and estimation us-
ing Parzen estimator (MIP) [10]. The time consumption
of tested registration techniques is presented in Table 1
where each value (time) is for the same particular regis-
tration. The last column was measured on different regis-
tration in the same grid since the used default vector was
the result from previous columns.

Table 1: Speed comparison of registration techniques

Entire
search

4-step
tech.

8-step
tech.

16-step
tech.

Gradient
ascend

SSC 55.323s 3.372s 1.027s 0.465s 0.031s

SAVD 44.746s 2.701s 0.821s 0.369s 0.036s

NCC 63.568s 3.995s 1.215s 0.546s 0.050s

CR 74.594s 4.746s 1.441s 0.648s 0.060s

MI h 121.567s 7.835s 2.296s 0.990s 0.085s

MI P 873.925s 56.460s 15.468s 5.384s 0.352s

The most important observations were, perhaps, the
robustness of voxel-based registration methods and the
movement behavior of the mounting stage. Tested regis-
tration methods proved that it is enough to search on just
grayscaled data for correct alignment. This introduced
big memory savings since parts could have been stored in
just grayscale. Furthermore, all methods except MIP ex-
hibited smooth evaluation of alignments and performed
equally well under normal circumstances. The smooth-
ness is illustrated in Figure 3 wherex and y axes con-
stitute a region in a plane of evaluated translational vec-
tors. Each vector represents unique alignment. The verti-
cal axis describes the evaluation. Domain of tested align-
ments is demonstrated in Figure 1, where the registra-
tion of adjacent fields in a grid row is outlined, in the
gray area. Using the notation from both figures it holds
(x,y) ∈ X×Y. TheR×Y area was excluded from eval-
uation. In this particular example of Figure 3 the overlap
was set to 7%. Thus, it was:X = 〈0,76〉, R= 〈77,86〉 and
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Figure 3: Alignment evaluation

Y = 〈−68,68〉. The smoothness enabled us to make use
of optimization techniques which introduced acceleration
that can be seen in Table 1.

The observed distribution of translational vectors in
given direction resembled normal distribution. This was
in agreement with expected behavior of moving stage be-
cause the controlling software always made it move by
exactly the same number of distance units. Small fluc-
tuations about mean value are due to better lateral res-
olution of the optical setup. The aim of default vector,
for the direction under consideration, was to estimate the
mean value of the stage. This reasoning enabled us to use
the default vector as a starting alignment for gradient as-
cend optimization technique which, in fact, only refined
the registration for given situation.

The robustness of registration technique and the de-
fault vectors provided the solution for detection of regis-
tration failures. It occurred, from time to time, that regis-
tration of two adjacent fields failed. Typically, the back-
ground formed more than two-thirds of overlap or there
were at least two equally probable alignments — graphs,
as those in Figure 3, contained more than two peaks. The
deviation from expected behavior was detected using de-
fault vector as described in the previous section.

The registration order was very important because of
default vectors estimation. We were successful with mod-
ified Prim algorithm, Figure 2, which builds a maximum
spanning tree on the most robust edges — robust from
the registration point of view. The robustness was in-
dicated by the measure given by equations (1) and (2).
The proposed measure emphasized overlaps with non-
constant texture that displayed some edges (i.e. structure)
which, in turn, was expected to guide the registration pro-
cess. Especially, the measure was low for overlaps with
background only. The ordering for highly-scattered non-
convex specimen acquired using a grid of10× 9 fields
is demonstrated in Figure 4. Every field is designated by
its field coordinate and its number according to registra-
tion order. Fields, with its coordinate depicted in a frame,
were among thirty fields that had its global coordinates
established first.

A transition smoothing was performed when stitching
adjacent fields. Since the overlap data were not strictly
identical, a simple overlay of, say, left field over right
field was not satisfactory. Notice the right-hand side of
Figure 5A where the overlay is noticeable. The direction
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Figure 4: Mosaicked image and the registration order

of transition is horizontal in Figure 5. Also note that the
overlay can be implemented as weighted sum with one
weight function constant at value 1 and another weight
function constant at value 0. A slightly better adjustment
of weights represented the linear weight function rang-
ing from 1 to 0 and from 0 to 1, respectively, over the
entire overlap. Pitfall of such smooth transition is visible
in the middle vertical stripe of overlap in Figure 5B. A
kind of blurring is visible there due to similar values of
both weight functions and due to data shift induced by
non-identical overlap data. We got better outcome by us-
ing quadratic or even biquadratic weight functions (rang-
ing again from 1 to 0 and vice versa), Figure 5C. Such
weights performed more rapid and yet smooth transition
making the blurred stripe narrower thus less noticeable.
A “zig-zag” technique further improved the outcome of
polynomial weights by narrowing the transition stripe, in
our implementation to 20 pixels, and by letting it to me-
ander along the axis perpendicular to transition direction.
Result of this technique is shown in Figure 5D. Visual-
ization of meandering transition stripe is in Figure 5E.

The stream stitching of fields was selected because
of memory constraint. It also holds a pleasant property,
from the implementation point of view, enabling to al-
ways stitch along the whole edge of adjacent fields or
adjacent assembled grid lines. Furthermore, this property
also determines the minimum memory requirement. The
memory subsystem must be able to store at least two grid
lines of entire input24-bit color images (fields). Depend-
ing on image dimensions and the size of overlap, this re-
quirement was more demanding than the requirement to
store, at the moment, all8-bit grayscale parts from all
fields in a memory subsystem.

Discussion

The nature of pathological specimen, which typically
displays some tissue, predetermines the voxel-based reg-

A B C

D E

Figure 5: Demonstration of few transition techniques

istration methods. Tissues hardly ever contain some spe-
cific features that can be extracted. Furthermore, these
features should be present within overlaps of all adjacent
fields. Consequently, the feature-based registration tech-
niques are out of question.

Voxel-based techniques proved to handle images of
tissues well. Unfortunately, the search through the pa-
rameter space is really time demanding. Even in spite of
the fact that we search only for translational vectors (i.e.
two dimensional space). In our particular experiments the
evaluation of alignments behaved well which enabled us
to use optimization techniques. In this way, we were able
to outweight the time consumption and gain a really fast
implementation.

However, in general case, we cannot be confident of
the shape of the alignment evaluation of an arbitrary data
without any prior analysis. An example of a shape of an
evaluation is in Figure 3. Moreover, the Gaussian prop-
erty of moving stage cannot be expected in advance ei-
ther. In such situations we always have to search the en-
tire registration parameter space. If the shape of evalua-
tion is smooth then we may use then-step optimization
technique to speed up the registration process since it is
quite a general optimization technique (it resembles clas-
sical pyramidal approach to search for global extrema). A
huge speed up can be gained even for smalln, i.e.n = 4,
while the base diameter of peak is usually larger than ba-
sic step. Still, we may remain helpless without the Gaus-
sian property of moving stage — for instance, when the
shape of evaluation is not unimodal.

The Gaussian property of moving stage allowed us
to handle fields where registration was not clear. We
tested the reliability of registration by computing de-
viation from default vector which estimated the mean
movement of moving stage for that particular direction.
This solution worked well. We could have used weights
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 from described graph representation to detect potential
registration-failure fields instead. But we would still have
to decide what to do with such fields, how to determine
the global coordinates. In our approach the default vec-
tors become handy in such situations. We also believe,
though we have not tested, that detection of successful
registration by deviation from default vector is more pow-
erful since it is not based directly on specific image data.
In fact, the detection of failure is based on the behavior
of registration.

The order establishment is crucial for setting the de-
fault translational vectors. In our implementation the re-
sponsibility is on the measure given by equations (1) and
(2). The measure should represent the applicability of
given overlap to image registration procedure. The higher
the measure is the more information the part poses which
is expected to be better for registration methods. The ad-
jacent fields with background in their overlap are less
weighted than fields with tissue in overlap since the back-
ground is expected to be more uniform. The texture of
background is more solid with a few noticeable pixel in-
tensities changes in comparison to texture of arbitrary tis-
sue.

The aim of transition was to preserve the original in-
formation as much as possible. The stitching process left
original data untouched and moved into adjacent image
data as fast as possible. A small area of entire overlap was
computed from both image data which typically resulted
in a decent blur. We’ve adopted this solution because of
streaming nature of final large image composition which,
again, enabled us to work with whole field’s edge or as-
sembled grid line.

Conclusions

We have described a software solution for obtaining
large 2D color images in high-resolution microscopy. For
this purpose we developed a special program which can
run very fast while still accurate as much as possible. The
entire system can efficiently make use of digital micro-
scope and an ordinary personal computer for acquiring
large-scale high-resolution color images of pathological
specimen.

However, the presented methodology doesn’t have to
work on general image mosaicking problem satisfacto-
rily. For example, we are expecting the orthogonal grid
of fields, which may pose a strong requirement in gen-
eral, although it is quite natural in microscopy. The se-
lection and processing order of techniques was focused
on microscopy of tissues. The parameters of techniques
were tuned for particular optical setup. We tried to dis-
cuss some aspects of our solution and suggest what to do
when some of expected constraints are not met.

The system is still in use in The Faculty Hospital Brno
in combination with Lucia DI software. The mosaicking
process itself works fully automatic on several different
kinds of tissue. The registration in combination with de-
fault vectors computes global coordinates well in respect
to the stitching. The smoothed transition was not deemed

harming by pathologists. The stitching process, as de-
scribed, didn’t produce any artifacts that could violate the
analysis.
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