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Abstract: The problem of the dependence of spectral 
entropy on data length is addressed. The EEG data 
recorded from 12 ICU patients is analyzed using 
four different schemes of power spectrum estimation 
for obtaining spectral entropy. Two of the schemes 
comprise the Welch periodogram averaging method, 
one scheme is based on the estimation of the 
autocorrelation function and one on the 
autoregressive modelling. The results show that 
spectral entropy values depend highly on the 
smoothness of the power spectrum estimate. Spectral 
entropy correlates significantly with data length only 
if FFT is used for power spectrum estimation and 
the FFT size varies together with the data length.      
 
Introduction 
 

Developing an objective measure for anesthetic 
depth has been a subject of great interest during the past 
decade. Although EEG-based devices for anesthesia 
monitoring were available already in 1970s [1], a 
breakthrough took place in 1997 when Aspect Medical 
Systems Inc., USA, introduced the Bispectral Index 
Score (BIS). This scalar index is a combination of three 
parameters calculated from the EEG signal: 1) the Beta 
Ratio, based on the power spectrum, 2) the 
SynchFastSlow measure, calculated in the bispectral 
domain, and 3) the burst-suppression ratio [2]. BIS 
gained much popularity and is currently widely used by 
anesthesiologists. It is often referred as the ’golden 
standard’ in anesthesia monitoring. 

Since the introduction of BIS, many companies 
have developed their own algorithms for the assessment 
of depth of anesthesia. The following commercially 
available methods can be mentioned as examples: the 
Patient State Index (PSI) by Physiometrix Inc., USA 
[3], the Narcotrend index by MonitorTechnik, Germany 
[4], the Entropy index by Datex-Ohmeda, Finland [5], 
the cAAI Index by Danmeter, Denmark (the algorithm 
is partly described in [6]). The performance of these 
indices has been discussed in numerous papers. 
However, comparison of the methods is difficult as the 
studies differ in various aspects like the anesthetic drug 
used, medication, patient condition etc.  

Besides the various commercially available systems 
several new measures have recently been proposed for 
the assessment of anesthetic depth. This has mainly 

been motivated by the complexity of the problem – the 
available methods are far from being exhaustively 
studied while at the same time the field of application of 
depth-of-anesthesia/sedation measures is getting wider 
comprising the Intensive Care Unit (ICU) as well as 
Emergency. Main interest has been in measures 
quantifying the entropy and/or complexity of the EEG 
signal like approximate entropy [7], Shannon entropy 
[8], Lempel-Ziv complexity [9], Higuchi fractal 
dimension [10], spectral entropy [5].  

Our interest has recently been to compare the 
behavior of the various entropy/complexity measures at 
different levels of sedation in the ICU. We have found 
that the various ways of quantifying signal 
entropy/complexity depend on different signal 
properties causing sometimes their contradictory 
behavior. For example, while all the other entropy 
measures decrease with deepening sedation, Shannon 
entropy tends to increase. Shannon entropy depends 
purely on the amplitude distribution of the signal 
regardless of the information about the time order of the 
samples. Another important observation is the 
sensitivity of the results on the EEG frequency band 
incorporated into the analysis. For example, cutting off 
the high frequencies and incorporating the delta 
frequency band tends to reverse the relation between 
sedation depth and EEG entropy at light levels of 
sedation.  

This paper addresses a problem we met in 
comparing the entropy/complexity measures of the EEG 
signal – the dependence of spectral entropy on the 
length of the signal window. Our aim was to test if this 
dependence was due to added information when 
incorporating more data or if it was due to the 
algorithm.   
 
Material 
 

The results presented in this paper are based on 
EEG recordings from 12 ICU patients (age from 29 to 
83 with the mean 63 years). Patients with known 
neurological disorders and patients admitted to the ICU 
after drug overdose were excluded from the study. The 
study was approved by the Ethics Committee of the 
South Karelia Central Hospital. The EEG electrodes 
were placed bilaterally to the forehead, below the 
hairline, approximately 5 cm above the eyebrows. The 
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 distance of the electrodes from the midline was about 4 
cm to either direction. The EEG signal was sampled 
with 400 Hz frequency.  

Ramsay score assessments were performed by the 
ICU nurse during the course of the recordings according 
to predefined protocol. The Ramsay score uses 6 stages 
to evaluate the level of consciousness with score 1 
indicating the subject being fully awake and score 6 
indicating full unconsciousness, i.e., the lack of 
response to slightly painful stimulus [11]. The time 
instants of Ramsay score assessment were determined 
according to the following protocol (if the status of the 
patient allowed scoring): 
1) during steady state periods: 

- 30 minutes after previous scoring  
- the patient had been in a steady state for at least 10 

minutes 
2) during interventions 

- immediately after the bolus dose of the anesthetic 
drug given before the intervention 

- if bolus dose was not given, just before the 
intervention 

- in addition, 1-2 minutes after the intervention 
3) when sedation was stopped: 

- immediately after the sedation was stopped 
- in addition, 10-15 minutes after the sedation was 

stopped 
All the recordings were carefully annotated. 
 Spectral entropy was calculated of manually 
selected signal segments. The segments were extracted 
according to the following rules: 

- the segments had to precede the Ramsay score 
assessment  

- the segments had to be as close to the Ramsay score 
assessment as possible 

- if burst-suppression pattern was seen in the EEG or 
if the signal was too noisy the corresponding 
Ramsay score assessment was discarded. 

Valid signal segments obtained from the data were 
distributed according to the Ramsay score values as 
follows: 
 
Ramsay score 1 2 3 4 5 6 
Number of segments 7 20 69 82 36 107 
 
Methods 
 

Spectral entropy is defined as: 
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with [ ]21 , ffN  being the number of frequency values 
in the considered frequency range. Thus, spectral 
entropy is a measure of ‘flatness’ of the power spectrum 
with pure sine wave and white noise giving the entropy 
values 0 and 1, respectively.  
 In the calculation of spectral entropy usually 
periodogram is used to estimate the power spectrum. 
However, it is well known that periodogram is an 
unconsistent estimate of power spectrum - in other 
words, the estimate does not converge to the true power 
spectrum as more data becomes available.  
 In order to study the cause of the dependence of 
spectral entropy on data length, the selected 20 second 
segments of the EEG signal were processed using four 
different schemes of the estimation of power spectrum: 
1) Welch periodogram averaging method I; the signal 

segment was divided into subsegments with 50% 
overlap. The subsegments were windowed using the 
hamming window and the FFT was taken. The 
estimate of the power spectrum was obtained as the 
average of the FFTs of the subsegments. We used 
four subsegment lengths: 1.25 sec., 2.5 sec., 5 sec. 
and 10 sec. - the shorter the subsegment the more 
subsegments were incorporated into the average. The 
FFT size was increased together with the subsegment 
length. 

2) Welch periodogram averaging method II; this scheme 
was similar to the previous one except that the FFT 
size was kept constant - 4096 data points. The signal 
subsegments were zero-padded before taking the FFT.   

3) Autocorrelation method; the autocorrelation function 
was estimated and power spectrum was obtained as 
the FFT of the hamming-windowed middle part of the 
autocorrelation function. Four different window 
lengths were used for cutting the middle part of the 
autocorrelation function: 5 sec., 10 sec., 20 sec. and 
40 sec. The FFT size was equal to the window length. 

4) Autoregressive modeling; power spectrum was 
estimated based on the coefficients of the 
autoregressive model. Model orders of 16, 32, 48 and 
64 were used. 

 
Results 
 

The results are shown in figures 1…4 for the 
different schemes of power spectrum estimation. Figure 
1 shows that if the FFT size is varied, the obtained 
spectral entropy is highly dependent on the signal 
subsegment length over which the FFT is calculated. 
Figure 2 shows that this dependence is actually reversed 
if the segmentation scheme remains the same but the 
FFT length is kept constant – in our case 4096 data 
points. The dependence is not as severe as in the case of 
scheme 1. Figure 3 shows that using the autocorrelation 
function for power spectrum estimation did not 
eliminate the dependence of the results on the window 
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 length as far as the FFT size changes together with the 
window length.  

In the case of  AR modelling, the behaviour of the 
power spectrum depends on the model order rather than 
the length of the signal window. Therefore, the 
coefficients were estimated over the whole 20 sec. 
signal segment. Figure 4 shows that if sufficient AR-
model order is used, the obtained spectral entropy is 
fairly stable, not depending on the choice of the model 
order.  
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Figure 1: Correlation of spectral entropy with the 
Ramsay score. Power spectrum is estimated using the 
Welch periodogram averaging method I. The window 
lengths of 1.2 sec., 2.5 sec., 5 sec. and 10 sec. are used; 
the length of the FFT is increased together with the 
window length.      
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Figure 2: Correlation of spectral entropy with the 
Ramsay score. Power spectrum is estimated using the 
Welch periodogram averaging method II. The window 
lengths of 1.2 sec., 2.5 sec., 5 sec. and 10 sec. are used; 
the signal subsegment is zero-padded to give the FFT 
length of 4096 samples for all window lengths. 
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Figure 3: Correlation of spectral entropy with the 
Ramsay score. Power spectrum is estimated using the 
autocorrelation method. FFT is taken over the middle 5 
sec., 10 sec., 20 sec. and 40 sec. part of the 
autocorrelation function.   
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Figure 4: Correlation of spectral entropy with the 
Ramsay score. Power spectrum is estimated using 
autoregressive model coefficients. The order of the AR 
model of 16, 32, 48 and 64 is used. 
 
 
 
 

An important result based on the figures is the 
correlation between the smoothness of the power 
spectrum and the value of spectral entropy. AR-model 
gives generally smoother power spectrum compared to 
the Welch periodogram averaging method. The figures 
show that the entropy values obtained using AR-model 
coefficients are in the range of 0.75…0.87 while the 
other schemes give values in the range approximately 
0.5…0.7. Also, if constant FFT size is used (fig. 2), the 
entropy value is higher for shorter subsegment length, 
corresponding to smoother power spectrum (shorter 
subsegments mean averaging over larger number of 
subsegment spectra). In figure 1 this does not hold due 
to the effect of varying FFT size.    
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 Discussion 
 

The results presented in this paper show that the 
dependence of spectral entropy values on the length of 
the signal window is not caused by the variable amount 
of information available but rather the properties of the 
periodogram as the estimate of the power spectrum. The 
amount of data available was equal – 8000 samples – 
for all the calculation schemes. Both schemes using 
varying FFT size (schemes 1 and 3) caused severe 
correlation between the FFT size and the spectral 
entropy value.  

Based on the results we suggest that the AR-model 
based calculation scheme for spectral entropy is the 
most stable with respect to data size. Model order 16 
seems to be too low to capture the behaviour of the true 
power spectrum. Model of order 32…48 can be 
suggested. 

It is important to note that although the different 
schemes for power spectrum estimation gave different 
values of spectral entropy, the correlation of the entropy 
with depth of sedation was not affected. This implies 
that as far as equal window lengths are used, the choice 
of the power spectrum estimation method is not critical.   
  
Conclusions 
 

The following conclusions can be drawn from the 
analysis presented in this paper: 
- the ability of the estimate of EEG spectral entropy 

to differentiate between various levels of sedation 
does not depend on the method used for power 
spectrum estimation in general. However, spectral 
entropy values achieved using different methods for 
power spectrum estimation are not comparable with 
each other 

- in the case of periodogram averaging, higher 
spectral entropy estimates for longer data windows 
are not due to the additional information contained 
in the data but rather comes from high variance of 
the power spectrum estimate typical to this method  

- in general, smoother power spectrum estimates 
(using AR-model coefficients, for example) give 
higher values of spectral entropy. 
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