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Abstract: Isokinetics devices are widely used in the 
field of knee rehabilitation. This kind of apparatus 
often solicits the knee joint in the sagittal plane with 
one degree of freedom. With the development of 
exoskeletons and intelligent prostheses, more precise 
control applications to assistive robotics for 
rehabilitation are possible. Our aim is to design a 
new apparatus for the 3 dimensional control of knee 
joint movements for sports training and 
rehabilitation. The first step to design such 
apparatus is to specify its kinematics. This paper 
presents a kinematical model of the knee joint that 
will be employed to specify the future Device 
kinematics and a preliminary control scheme. 
 
Introduction 
 

Isokinetics devices are widely used in the field of 
knee rehabilitation. This kind of apparatus often solicits 
the knee joint in the sagittal plane with one degree of 
freedom [1]. With the development of exoskeletons and 
intelligent prostheses, more precise control applications 
to assistive robotics for rehabilitation are possible. Our 
aim is to design a new apparatus for the 3 dimensional 
control of knee joint movements for sports training and 
rehabilitation. This apparatus have to be used as an 
evaluator of the knee pathologies as well as a 
rehabilitation device. 

Different kinds of models have been presented in the 
literature: Phenomenological mathematical knee models 
and anatomically based mathematical Knee models [2]. 
In a first step, we need a kinematical based model of the 
knee to specify the kinematics of the future 
rehabilitation device. The chosen model, which is 
presented in the next part, is a hybrid of 
phenomenological and anatomical consideration of the 
knee in the sense where it doesn’t have to be very 
precise but respect the whole knee kinematics. 
Afterward, to test the efficiency of the proposed model 
and to have preliminary results on the controllability of 
the future device, the model is stabilized with a 
proportional derivative controller.  
 
Geometrical and kinematical model of the knee 
 

Numerous planar kinematical knee joint models 
have been presented in previous literature. Some 3D 
models have been also presented but with some 
assumptions relating to the application for which they 
were destined to. The interests of many of these models 

are discussed in [3]. Knee models are based on 1, 2 or 3 
degree of freedom and more recently on 6 degree of 
freedom [4]. In this study, six degrees of freedom have 
been considered for the knee modelization. This model 
remains as an open chain of 3 rotoïd joints (flexion-
extension, adduction-abduction and intern-external 
rotations) and 3 translational joints (medio-lateral, the 
anterior-posterior and tibial axial translations) 
connecting the femur to the tibia, figure 1. 
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Figure 1: 3D kinematical model of the knee 

 
The structure of the future rehabilitation device is 

then chosen with a similar kinematics as the above 
kinematical knee model. Then, in order to compute a 
simulation of this model, a mathematical description of 
the kinematics is needed [5][6][7]. That one is obtained 
from the derivative of the direct geometrical model 
described hereinafter. 

The direct geometrical model describes the 
coordinates of the effectors (position and orientation 
from a point fixed to the tibia) in a reference frame  
(attached to the femur) related to the articular variables: 

0R

 
( )X f q=  (1) 

 
With: 
− : articular variables vector 

including all the knee degrees of freedom (articular 
space), 

[ ]1 2 3
Tq d dα β γ= d

]− [ TX x y z φ θ ψ= : tibia’s position and orientation 
vector expressed in the reference frame fixed to the 
femur (operational space), 

− L  : length of the tibia,  
− α : adduction-abduction rotation,  
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 − β : flexion-extension rotation,  
− γ  : external internal rotation,  
− : anterior posterior translation,  1d
− : medial lateral translation,  2d
− : tibia axial translation.  3d
 

The relation (1) is often written by means of a 
homogeneous transformation matrix which depends 
on the angular and the translational variables of the knee 
and anthropometric values. is deduced from the 
combinations of all the translations and rotations with 
respect to the above defined kinematics (figure 1). It 
yields: 

0
3T

0
3T

 
0

3 2

1 3

( , ). ( , ). ( , )
. ( , ). ( , ). ( , ). ( , )

T rot y tr y d rot x
tr x d tr z d rot z tr z L

β α
γ

=
 (2) 

 
Where a matrix  denotes the rotation of  
(rad) around the  axis and  the translation of v  
(mm) along the  axis.  

( , )rot j u u
j ( , )tr j v

j
Equation (2) can also be written as: 
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Where  is the orientation matrix of the tibia’s frame 

 explained in the reference frame (fixed to the 
femur).  
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(4) 

 
The tibia’s position is done by the vector . It 

depends on the articular variables written in the 
reference frame :  
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As the position of the tibia is defined by , we 
need now to describe its orientations. These orientations 
are obtained using the Euler angle method [8] with the 
sequence 

0
3P

( )zyz  and where φ , θ  and ψ  are 
respectively the rotation around , the rotation around 

 and the rotation around , figure 2.  
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Figure 2. Euler Angles, sequence (  [8] )zyz
 
Then the orientation matrix 0  can be written as: 3A
 
0

3 0( , ). ( , ). ( , )n nA rot z rot y rot zφ θ ψ=  (6) 
 
Left multiplying (6) by 0( , )rot z φ− we obtains: 
 

0
0 3( , ). ( , ). ( , )n nrot z A rot y rot zφ θ ψ− =  (7) 

 
Expanding (7), it yields: 
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(8) 

 
Identifying the first and the second member of (8), we 
find: 
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Then, the direct kinematical model of the knee can 

be defined from the direct geometrical model as: 
 

( ).X J q q=  (10) 
 
Where ( )J q  is the jacobian matrix depending on the 
articular configuration . Owing to , q 6( )X f q= ∈

( )J q  is obtained by the following equation: 
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( )

1,...6; 1,..., 6i
ij

j

f q
J i j

q
∂

= = =
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 (11) 

 
Where ijJ  is the  line and the thi thj  column element of 

the jacobian matrix ( )J q . 
 
Inverse kinematical control 

 
In this section, our aim is to compute the inverse 

kinematical model in a way to evaluate its behavior in 
the operational space. That is to say the controlled 
variables are the translational and rotational coordinates 
of the tibia included in the vector X . The inverse 
kinematical model is deduced from (10) and is written 
as: 
 

1 ( ).q J q X−=  (12) 
 

The inverse kinematical model (12) is known 
instable in open loop. Owing to that, we apply a 
proportional derivative corrector (PD) in the control 
scheme detailed figure 3. Moreover, the use of this kind 
of corrector within the closed loop system allows the 
implementation of the inverse kinematics algorithm and 
avoids the drift due to numerical integration [9][10]. 
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Figure 3: Control scheme design. 
 
The PD control law is written as: 
 

.p vu k e k e= +  (13) 
 
Where  is the input vector that is homogeneous to the 
tibia’s velocities, 

u
dX  is the desired trajectory vector, e  

is the input output error vector, pk  is the proportional 
gain matrix and  the derivative gain matrix, vk pk  and 

. 6 6
vk ×∈

 
d

d

e X X

e X X

= −

= −
 (14) 

 
The gain matrix  pk  and  are tuned with several 

trials in a way such a good step response is obtained.  
vk

 
Results and discussion 
 

Figure 4 show the step response, using the PD 
controller, where the simulated movement is an 
extension from 3θ π= −  to 0θ =  at time . The 
static error tends toward zero and steady state time is 

quite slow, about 0,4 s, regarding to physiological 
capabilities of the human knee. Of course the same 
results have been observed about all the operational 
coordinates. 
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Figure 4: step response on θ . 
 

To test the kinematical behavior of the closed loop 
system, sinusoidal desired trajectories are employed. 
Figure 5 shows, on θ , that the error between the desired 
trajectories and the outputs are weak (error max about 
0.05 rad). After that, we assume that the use of the PD 
controller is an adequate solution to simulate the knee 
kinematics without disturbance. 
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Figure 5: Simulation with sinusoidal inputs. 
 

In order to implement that controller in a real time 
application, a disturbance  has been introduced to the 
above control scheme to simulate a measurement error 
on the flexion angle as describe in figure 6. In that 
simulation,  corresponds to pulses starting at 0.2s and 
1.2s and with a bandwidth of 0.02s.  
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Figure 6: Control scheme with measurement error 
simulation. 
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 Figure 7 shows that the closed loop system with the 
PD controller is not able to reject this perturbation. 
Consequently, it is necessary to synthesize a robust 
controller to improve the system performances which is 
the aim of our future works. 
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Figure 7: behavior of PD controller in the presence of 
disturbances. 
 

When a disturbance on the medio-lateral translation 
is applied, it doesn’t affect a lot the other variables 
because of the small range of this degree of freedom. 
Then, in order to simplify the future apparatus, this 
degree of freedom should be neglected and only the 
adduction-abduction will be considered in the frontal 
plane.  
 
Conclusions 
 

This paper presents a 3D kinematical model of the 
knee to be used to design a new rehabilitation device. A 
preliminary control scheme is then proposed. 
Simulation results show that the model is able to follow 
the set points. Then, the future device can use this 
controller to achieve simple tasks like rehabilitation in 
flexion extension without disturbance. Nevertheless, the 
difficulty to control such device is highlighted 
especially when measurement error in the close loop are 
observed. Consequently, in future studies, the control 
scheme will be extended with a non-linear controller to 
compensate for the non-linear behavior of the 
kinematical model if complex tasks are required. A 
robust non linear sliding mode controller [11] associated 
with a dynamical uncertain model of the future 
apparatus will show how the whole system (including 
the apparatus as well as the knee) behave on the 
presence of reference trajectories obtained from motion 
capture. 
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