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Abstract: In this paper, we propose a multi-scale mid-
line extraction method for reconstructing the vascular
trees out of retinal images. This approach offers the
advantage to handle vessels of different widths simul-
taneously. On the basis of the used segment represen-
tation of the vessels, we compute geometrical features
of the vessel segments. Comparing these features with
characteristics of vessels the false positive rate is re-
duced and gaps in the extracted midlines are closed.
We give some example results of our approach on dif-
ferent retinal image modes.

Introduction

In this paper we address the problem of segmenting
the vascular trees in retinal images. In its general form
this problem can be stated as one of extracting a continu-
ous midline of elongated objects of various widths. There
are various other applications of midline extraction in the
field of image analysis, for instance analysis of heart fi-
bres [1], description of characters, plant root detection
[2], analysis of aerial images [3] and finger print analysis.

Considering the graphG of an d dimensional grey-
scale image functionL(ξ ) (with ξ = (ξ1, . . .ξd)) as a
hyper-surface (in an (d+1)-dimensional space), one can
define ridge and valley points using local characteristics
of this hyper-surface. More precisely, we analyse the im-
age gradient∇L on the boundary of a small neighbour-
hood inG surrounding the point(ξ ,L(ξ )). This can be
done by choosing the eigenvectors of the Hessian matrix
of L as the local coordinate system. Maintz et al. [4] for-
mulate a class of ridge measure based on the isophote
curvature, which are the curves onG featuring the same
level of grey-scale. Since these measures show a poor per-
formance at saddle zones in discrete domains [5], López
et al. have developed a different discretisation, namely
κ = −div(∇L/‖∇L‖). Their measure is the fundament
of our method.

Our method is based on a scale-space analysis. Such a
multi-scale approach offers the advantage to process im-
ages or other objects with various parameter adjustments
simultaneously. This leads to different results, which have
to be finally combined to a single solution. Therefore,
the most challenging task of multi-scale approaches is a
consistent combination scheme. Compared to other ap-
proaches, the proposed operator minimises the effect of

erasing the inferior structure at crossings, bifurcations
and neighbouring objects. Furthermore, we directly pro-
vide the tangential direction of the midline at the sample
points.

We have found other works on multi-scale operators
for midline extraction [3, 6, 7]. The commonness of these
approaches is the design of the scale-space, which is built
directly on the input imageL. Typically, these approaches
result in fragmentary midlines, due to the fact that we
have a loss of spatial precision, when smoothing in the
image space. In contrast, we are smoothing the gradi-
ent tensor field∇L ·∇L t component-wise using different
Gaussian convolution kernels. This offers the advantage
of a more robust localization of the midlines due to the
fact that even for thin objects, the gradients at the borders
are present in large scales. In the case of applying large
Gaussian masks directly onL, thin objects are razed. Fur-
thermore, combining midlines of different image scales
could lead to points of discontinuity, when there is an er-
ratic change in the width of the object. With our method
this problem is solved, since we firstly combine the vector
fields of different scales and then extract the midlines.

This paper is organised as follows. At first we present
the scale-space approach for midline extraction. The use
of a scale-space offers the advantage to extract thin and
wide vessels at the same time. In contrast to earlier ap-
proaches the scale-space is not directly computed on the
intensity image in our work. Instead, we firstly compute
the gradient vector field and use different smoothing tech-
nique for vector fields. For that purpose different convolu-
tion kernels are used and for each image location exactly
one vector is chosen out of the computed scales. The re-
sult of this midline extraction process is a set of midline
segments, which are organised to build the vascular trees.
Finally, we present some results of our approach and con-
clude with the discussion and give an outlook for future
works.

Scale-space approach

In this section we explain the midline extraction pro-
cedure, which is the heart of our algorithm. This proce-
dure can be divided into the subtasks: computation of the
structural tensor, iterative construction of the scale-space,
application of the divergence operator on the combined
vector fieldand finally the extraction of the midlines. At
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 the end of this section we discuss the choice of the pa-
rameters.

Since we use second order derivation to computeκ ,
we need an idealised gradient vector field. The cross-
profile of the vessels are frequently bar-like and the gradi-
ents could be very small or even vanish near the midline.
Therefore, we wish to propagate the meaningful gradients
at the edges towards the midline of the vessels. Smooth-
ing the image has known side-effects, which we want to
avoid.

The main idea is to construct the scale-space not
on the image, but on the image gradient∇L (x,y). We
present a method for smoothing the vector field such that
the meaningful gradients at the edges are propagated to-
wards the midlines. The computation of the image gra-
dient in a specific scale is realised by an analysis of
a component-wise smoothed structured tensor, which is
computed as∇L ·∇L t. For each image location we com-
pute the local structure tensor and convolve the compo-
nents of this matrices along the image plane. During the
iteration we keep up the vector field, which contains the
currently best gradient vectors.

Structural tensor

Initially, we compute the image gradient vector field
at the pixel grid with the Sobel operator. The used Gaus-
sian mask should be chosen relatively small, since edges
introduced by noise are automatically erased in the fur-
ther process. The edge magnitude is normalised into the
interval [0,1]. To compensate local differences in con-
trast we boost the edge magnitudes by the function

btinfl (s) = 1−exp
(
− s2

2·t2infl

)
. Let tconf denote the value of

btinfl at its inflection pointtinfl , which is an external pa-
rameter. Gradients holding a magnitude of greater than
tconf are considered as confident and will be treated more
carefully.

Following the approach of Ĺopez et al. [5] we apply
the component-wise smoothing of the structured tensor
and compute the gradient at each image position as the
eigenvector to the greatest eigenvector of the smoothed
structured tensor field. The motivation of this approach is
that the structured tensor is a symmetrical matrix of the
form:

ST(x,y) =
(

Lx(x,y)2 Lx(x,y) ·Ly(x,y)
Lx(x,y) ·Ly(x,y) Ly(x,y)2

)
,

with the eigenvector∇L to the eigenvalue

λ = s2 = L2
x +L2

y. (1)

We utilise this property to compute the gradient magni-
tudes of the different scales.

Forming the scale-space

After computingST(x,y) for each grid position we
construct the scale-space on this structural tensor. For
each scale we compute the gradient vector field, which

consists of the eigenvectorgk (x,y) to the greatest eigen-
vectorλk(x,y) of the component-wise smoothed version
of ST(x,y). Depending onλk we compute the new gradi-
ent magnitude. Since the sign ofgk (x,y) is not clear, we
have to reconstruct it by some additional considerations.

During the iterative construction of the scale-space
we keepvopt(x,y), the optimal gradient vector field com-
puted so far, withsopt := ‖vopt‖ denoting its magnitude.
The scale-space is built by component-wise convolution
of the structural tensor repeatedly with the same Gaussian
maskGσ with standard deviationσ . Due to the fact, that
the family of Gaussian distributions build a half-group
under the convolution operator?, the standard deviation
during thek-th iteration isσk = σ

√
k, i.e.(Gσ )?k = Gσk.

In the following we explain one iteration stepk at
a fix grid point(x0,y0). Smoothing the structural tensor
ST(x,y) results in a matrix of the form
(

mxx mxy

mxy myy

)
:=

(
(Gσ )?k ?

(
L2

x LxLy

LxLy L2
y

) )
(x0,y0)

with greatest eigenvalueλk = 0.5 · (s2
k + pk

)
, wheres2

k =
mxx+myy is equal to the square of smoothed vector mag-

nitudes andpk =
√

(mxx−myy)
2 +4m2

xy can be viewed
as a measure of parallelism. If the considered neighour-
hood surround(x0,y0) consists of parallel gradients,pk

takes the maximum values2
k. On the other handpk = 0

at locations where two orthogonal gradient directions oc-
cur (equally weighted). As mentioned above, the gradient
vector vk is computed as the eigenvector to the eigen-
value λk. The new magnitude is determined by taking
two numbers into account, namelyλk and the quotient
pk
s2
k

= λk−λ̃k
λk+λ̃k

∈ [0,1], with λ̃k denoting the smaller eigen-

value ofST(x,y). Taking the eigenvalue as magnitude is
a consistent extension of the property (1). On the other
hand the termpk

s2
k

is a measure of parallelism and further-

more independent of the edge magnitudes in the neigh-
bourhood. We choose the geometrical mean of these val-
ues as the new squared edge magnitude

s2
new =

√
0.5· (s2

k + pk
) · pk

s2
k

. =

√
λk · λk− λ̃k

λk + λ̃k
(2)

In image regions with no preferred gradient orientations
the magnitude are pruned by this combination, due to the
fact that pk is low. On the other hand the gradients are
boosted in image regions with a clear major orientation
even when there is a low base level of gradient magni-
tudes.

If snew > sopt we further process in updating the ac-
tual vectorvopt, otherwise we leavevopt unchanged. An
open problem not discussed yet is the unknown sign of
the eigenvectorvk. López et al. [5] propose an alignment
into the half-space to which the original gradient points.
This could lead to opposed islands of gradients at regions
with relative homogeneous grey values. Another side ef-
fect is a possible erasement of the gradients introduced
by small objects lying in the neighbourhood of dominant
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 structures. Due to this unwanted behaviour we make a
consensus decision based on the image gradientgk in-
troduced by the smoothed version of the original image
Gσ

√
k ? L and the actual vectorvopt. With respect to the

iterative smoothing process and equation (2) we compute
two thresholds (in case ofk > 1):

tlow := σ−1
k ·

√
0.5 · tconf and thigh :=

√
0.5· tconf

Let cosgrad denote the cosine of the angle betweenvk and
gk, cosk denote the cosine of the angle betweenvk and
vopt. The decision rule for the sign ofvk is based on

sgn:=





cosgrad if λk < tlow ∨ sopt < tlow

∨ k = 1
cosk if λk ≥ thigh ∧ sopt≥ tlow

(λk− tlow) ·cosgrad otherwise.
+

(
thigh−λk

) ·cosk

If sgnis negative the orientation ofvk is reversed by mul-
tiplying vk with−1. This case differentiation is motivated
by the consideration that we want to keep informations of
consistent gradients. For small values ofsopt or λk the
orientation ofgopt is possibly uncertain (first case), so
that the decision on the sign should only depend on the
smoothed gradientgk. On the other side, whenλk and
sopt are sufficiently great, we take only the orientation of
the currently optimal gradientgopt into account (second
case). The third case is a fuzzy-like compromise between
the exclusive decisions. Finally, we replacevopt byvk with
the magnitudesnew.

Computing the creaseness measureκ

Since the combination of the different scales could in-
troduce boundary effects, we apply the same smoothing
procedure on the resulted gradient vector field, but only
with a single iteration. The divergence operator computes
κ under the constraint that the norm of each vector is 0 or
1. A normalisation of all gradient vectors, which have a
positive norm, causes unwanted effects at homogeneous
image regions, since the vectors at the propagation hold
no confident orientation. To avoid this problem we ap-
ply the boosting functionb0.33 on the vector magnitudes
instead of the normalisation.

The divergence operator is based on deviations. Since
the vector field has been smoothed already, we imple-
ment deviations by the mean of finite forward difference
and finite backwards difference with an increment of one
pixel. The result is a scalar field, which holds the values
−κ (x,y).

An additional smoothing of the scalar fieldκ leads
to the extraction of less erratic midlines, but could cause
misbehaviour in regions with undefined gradient vectors.
In that case we produce vectors, which have no direction,
but a positive norm. Due to this problem the smoothing
of κ should be used with care. We choose triangular con-
volution kernels of size three in both image dimensions.
This kernel reduces the occurrence of unwanted side-
effects, but achieves continuous midlines. The remaining
vectors are denoted as the idealised gradient vectors.

Extraction of the midlines

After extracting the pixels holding maximal crease-
ness using a non maximum suppression strategy, we ar-
range those which are forming segments. We connect two
neighboured pixels, if several conditions are true. Firstly,
the difference in creaseness is not allowed to exceed a
threshold. The second important constraint is about their
gradient direction. These directions correspond to the lo-
cal orientation of the slope lines, which we consider to
be orthogonal on the midline. With this assumption the
relative position of two neighboured midline pixel is val-
idated. As a result each pixel has at most two connected
neighbours, so that they form chains with exactly two end
points. Since on the pixel grid diagonal-wise connected
pixel have distance of

√
2 pixels, we resample each seg-

ment with an increment of 1 pixel. The resampling of
a segmentseg is done by traversing it from its starting
point and keeping the distance, which is covered so far.
We compute the tangential direction ofsegfor all loca-
tions with an integral distance to the starting point. This
can be done by a linear interpolation of the orthogonal
vectors on the smoothed gradient direction at the near-
est pixel locations on the segment. With this representa-
tion of a midline segment we are able to compute various
features for each segment (length, local creaseness, av-
erage creaseness, turning points, intensity integration on
the original image). These features could be used as a ba-
sis for decision if a segment should be selected or not.

Parameter adjustment

The presented method can be adjusted by four numer-
ical parameters, namelyσSobel, tinfl , σiter andniter. The in-
fluence of the standard deviationσSobel of the Gaussian
mask for the construction of the gradient vector field has
been discussed in various works. The parametertinfl of-
fers the possibility to control the inflection point of the
boosting function b(s). A low value results in the con-
sideration of low contrast edges of the input image. The
choice of the standard deviationσiter defines the smallest
structures which are preserved during the iteration. Since
the Gaussian of the iterationk has a standard deviation
σiter

√
k, the decreasing ofσiter causes more iterations to

achieve the same blurring effect. Obviously, this corre-
lation behaves quadratically. The parameterniter defines
the maximal width of the elongated objects, for which the
midlines are correctly computed. The increase ofniter has
primarily effects on regions with an actual low response,
but there could occur unwanted side-effects. It is not pos-
sible to avoid these side-effects generally, due to seman-
tical ambiguity. For example, the dominant structure of a
horizontal line, which is an arrangement of vertical dark
bars, depends on the context. This gap cannot be closed
by a multi-scale approach. Experiments have shown, that
for retinal imagesσSobel = 1, tinfl = 0.2, σiter = 1 and
niter = 10 are suitable values. The manual adjustment of
these parameter is easy and mainly depends on the image
scale.
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 Extracting the vascular trees

In the last section we have described the approach to
extracting midlines of dark elongated objects. Beside the
vessel midlines we have a lot of midlines which are pro-
duced by non-vessel objects (see Figure 2). In the fol-
lowing we explain how to filter these unwanted detected
midlines and keep most of the vessel midlines.

Vessels are objects with are relative straight and con-
nected to each other. For this reason segments with length
less than eight pixels are taken out of consideration. Fur-
thermore, a limited difference of the midline directions
at two neighboured sample points is allowed. The occur-
rence of a rapid change of the midline direction is an indi-
cator for a sharp turn. Since vessels normally are straight
objects a sharp turn indicates the presence of a non-vessel
object or the tracking towards the wrong vessel segment.
For this reason a segment is divided in two parts at sam-
ple points, where the directions differ more than13.5o.
This corresponds to a restriction of the midline segment
creaseness.

On all remaining segments we apply the connection
procedure The open problem of handling bifurcations is
discussed afterwards. Finally, we describe the influence
of the thresholds and parameter used in the following pro-
cedure.

Connecting midline segments

The presence of noise could separate a vessel in dis-
connected segments. Therefore, a reconnecting algorithm
is essential for extracting vascular trees. Small gaps pri-
marily appear at vessel crossings, near pathological ob-
jects, in low-contrast regions and in noisy regions, respec-
tively. To close these gaps, we define a distance function
on the segment endpoints.

The Euclidian distance is insufficient for this purpose,
since it does not take the course of the midlines into ac-
count. To overcome this problem we firstly compute the
direction of the segments at both of their endpoints. This
can be done by taken the mean direction accumulated at
a fixed number of the last sample points of the segment.
We use 10 samples to compute the ending directions and
run the connection process. Thereby, some segments are
merged and so the total number of segments decreases.
Then we repeat the same operation on the remaining seg-
ments using 15, 20 and finally 5 samples for direction
computation. The segments have typically highly curved
short end pieces, independent of the true course of the
segments. This may bias the direction estimation. For this
reason we use 5 samples in the last processing cycle.

In the following we define the distance function on
an endpoint pairp1 and p2 (see Figure 1). Letseg1 and
seg2 denote the corresponding segments andαi is the an-
gle between the extended segment (towards the computed
ending direction) and the line betweenp1 andp2. If both
anglesα1 andα2 are less than40o and theL1-distance
betweenp1 andp2 does not exceed 30 pixel we compute
the B-SplineSp1,p2 connecting the segments. Thereby, the
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Figure 1: Connection of two segments

control points are chosen carefully on the elongation lines
e1 ande2. The distance between the two endpoints is a
combination of

(1) the lengthlspline of Sp1,p2

(2) the lengthsl1 andl2 of seg1 andseg2 and
(3) the mean areaA of the trianglesA1, A2 (see Figure 1).

With these values we experimentally derive the distance
function:

Dep(p1, p2) =
√

l−1
1 + l−1

2 ·
(

0.75·
√

A+0.25· lspline

)
.

Let EP denote the set of all unconnected endpoints. In
the following the connection process based onEPand the
Dep is depicted. At first the distance matrix onEP is com-
puted. We connect two endpointsp1 and p2 if they are
pair wise their nearest neighbours subject to some condi-
tions discussed below. Thereby, the connection segment
is chosen as the already computed B-SplineSp1,p2 and af-
terwardsp1 andp2 are eliminated fromEP. The two seg-
ments belonging top1 andp2 and the connection segment
together form a new segment. This procedure is repeated
until EP becomes stable, meaning that there is no pair of
unconnected endpoints which is a nearest neighbour pair
and satisfies all the conditions.

To avoid a connection of relative short segments with
relative great distance, some constraints are checked.

Firstly, the length of the connecting segments each
segment should consist of at most1/3 of connection seg-
ments. Secondly, two segments are connected only if the
length of the connection segment between them is shorter
than twice the minimum of the single segment lengths.
Finally, all remaining segments with length less than 16
pixels are deleted.

Handling of bifurcations

During the connection process the presence of vessel
bifurcations implies a special handling. At bifurcations
there exists normally one dominated vessel and a smaller
one. As a result the midline segments1 corresponding to
the smaller vessel has one endpointp near the midline
segments2 of the dominated vessel. Since there are no
correct counterparts forp, the segments1 should not be
extended atp. To detect such situation we are still inves-
tigating a bifurcation filter, marking possible bifurcation
points and allow connections between them and near end-
points.
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Figure 2: Result on retinal angiography without (top) and
with (bottom) connecting segments

Parameter Adjustment

We use several experiment based thresholds and
weights for the filtering and the connection process.
Some of them depend on the image scale since for in-
stance the minimal length of segments or the maximal
creaseness of the midlines. These scale-dependent pa-
rameters could be easily modulated to other image mate-
rial. Other parameters should be varied carefully or even
kept fixed. These are the weights for the combination
rule defining the distance functionDEP and the pruning
thresholds to avoid segment chains, which contain a high
fraction of B-Spline segments. We are investigating an
optimisation of the parameters on objective criteria.

Results

We have tested our method on angiographies (Figure
2) and retinal images (Figure 3). Thereby, we use ade-
quate pre-processing techniques for enhancing the con-
trast of the images. Since there are retinal images of
various quality, we have not investigated a unique pre-
processing method, which are able to handle all those dif-
ferent retinal images. In Figures 2 and 3 the midlines are
superimposed on a grey-scale version of the original. The
colour of the midline pixels specifies the direction of the
midline at this position. Thereby, turquoise correspondes
to vertical and red correspondes to horizontal directions.

It should be possible to enhance our results by an
improved pre-processing method. The results depends

Figure 3: Result on retinal images [8]: normal (top) and
pathological eye (bottom)

somewhat on the parameters for the multi-scale midline
extraction,

By comparing the midlines which are extracted using
the scale-space approach (Figure 2 top row) with the re-
maining midlines after applying the vessel combination
scheme (Figure 2 bottom row), it is evident that the false
positive rate is reduced.

We have not tested the accuracy of our method on the
ground truth data base of Hoover [8]. A visual inspection
of the results affirmed that we have reached our purpose
to extract vessels of various widths simultaneously. To
quantify these observation we are working on an exten-
sion of our algorithm, which computes the vessel borders.
The result of this vessel segmentation could be compared
with ground truth data [8].

Discussions and conclusion

In this paper, we have proposed a multi-scale ap-
proach for vessel extraction. Our method enables the pos-
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 sibility to extract the structure of the vascular tree, with
only little adjustments of parameter concerning the gen-
eral image quality. We are able to reconstruct parts of
the vessel trees, even though a special handling of ves-
sel bifurcation is not yet taken into consideration. By us-
ing characteristics of vessels, the false positive rate could
be visibly decreased. Furthermore, the extracted midline
segments can be used for the computation of vessel fea-
tures like the mean curvature the length and the angles
at crossings, respectively. An extension of the perceptual
grouping of the vessel segments for handling bifurcations
should be possible. After this extension the vascular trees
could be extracted completely.

Acknowledgment

The authors would like to thank A. Hoover and B.
Török for the image materials.

References

[1] LUNKENHEIMER P.P., REDMANN K., KLING

N., ROTHAUS K., JIANG X., CRYER C.W.,
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