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Abstract: The Auditory Brainstem Response 
(ABR) is a clinical trial whereby a stimulus click is 
applied to a subject’s ear to determine hearing 
capability and health of the auditory pathways. If 
the stimulus is heard a response should be noted in 
their EEG. A significant body of work has been 
devoted to the enhancement and automated 
classification of these responses. This paper presents 
a methodology whereby wavelet decomposition is 
performed on the pre and post-stimulus sections of 
the ABR waveform. Wavelet coefficients best 
representing the ABR are selected and a power ratio 
using the post over pre-stimulus coefficients is used 
as a response indicator, classifying strong visible 
responses with an accuracy of 99.5%. Those left 
unclassified are passed to a further stage whereby 
repeat recordings are used to calculate cross-
correlation features derived from the wavelet and 
time domains. These formed inputs to a C5.0 
decision tree algorithm resulting in an accuracy for 
the lower level responses of 80%.  
 
Introduction 
 

Wavelets form a powerful tool for multi-resolution 
filtering and analysis. They decompose the signal into 
frequency bands that maintain a level of temporal 
information [1]. One such area that benefits from 
wavelet filter theory is in the pre-processing and feature 
extraction of Auditory Brainstem Responses (ABR) [2]. 
The conventional method of extracting the ABR 
waveform has been averaging which uses the 
deterministic nature of the signal to enhance the 
waveform while suppressing the background noise and 
EEG. Typically up to 2000 single trials may need to be 
averaged before the noise is sufficiently suppressed. 

Figure 1 shows a very strong visible response for a 
healthy adult with a 70dB (normal hearing level, nHL) 
stimulus. This is referred to as the Jewett waveform and 
is characterised by seven peaks, of which the key five 
are labelled on Figure 1. As the level of stimulus is 
reduced, the different peaks of the waveform become 
less obvious, and their latency is increased. The shape 
of the waveform from the long slope at the top of peak 
V is the strongest part of the waveform to remain as the 
stimulus diminishes. This is depicted in Figure 2. It can 
be seen that the identification of wave V and its 
following negative slope are key to classifying the 
presence of a response in a less obvious case, when the 
stimulus level is set near the subject’s hearing threshold. 
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Figure 1: Jewett ABR waveform at a 70dB Stimulus 
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Figure 2: ABR waveform at a 70, 50 and 10 dB Stimuli 
 

The ABR waveform will differ from subject to 
subject and may be affected by external conditions such 
as, electrode placement, filtering ranges, intensity 
levels, ear used, and even patient head shape. A range of 
factors need to be taken into consideration before a 
clinical expert can make an interpretation. They may 
need to: 

• Check latencies of waves I, III and V 
• Examine overall morphology of waveform 
• Evaluate consistency of subaverages 
The interpretation of the waveforms can be 

subjective, thus clinical experts may not always draw 
the same conclusion [3], which is particularly true in 
threshold cases. Artificial intelligence techniques can 
provide an objective assistance in response 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 interpretation [4,5]. Useful information may be 
extracted from the EEG records using analysis in the 
time and frequency domains. Davey [5] showed that 
power analysis of the post and pre-stimulus time domain 
waveforms could be used as an effective method to 
classify strong responses with an accuracy of 98.6%. A 
ratio was calculated from the powers in the post over 
pre-stimulus waveforms. Ratios above a set threshold of 
5 indicated a response. Remaining ABRs were passed to 
a second stage of analysis, whereby repeat recordings 
were used to derive features based on cross-correlation 
parameters using both the time and frequency domains. 
These features provided inputs to train decision trees 
and neural networks to classify the responses, resulting 
in an accuracy of 82.5%.  

In this paper an analysis using wavelet 
decomposition has been investigated using a subset of 
test cases from the same dataset as Davey [5]. Although, 
the exact dataset was not known, therefore, the time 
domain analysis was repeated to guarantee that a valid 
comparison could be made. A similar structure was 
followed using a two-stage process. Power ratios of the 
post over pre-stimulus wavelet coefficients were used to 
classify strong responses. Those remaining were then 
classified using correlation features of repeated tests 
derived from the wavelet domain. 
 
Materials and Methods 
 

The investigations were performed on a database of 
89 test subjects, provided by the Audiology Department 
of the Royal Group of Hospitals in Northern Ireland. 
Each subject had a range of tests stimulus levels applied 
providing an ample mix of good, weak and non-
response waveforms, all of which were classified by a 
clinical expert. The data was pre-processed by band-
pass filtering (100Hz-3kHz) and then sampled at 20kHz. 
Each waveform consisted of 480 data samples, half 
before the stimulus and half after, which related to 12ms 
before the stimulus and 12ms after the stimulus. 

Figure 3 depicts how the data was pre-processed 
before commencing the wavelet analysis. The first stage 
was to de-noise the data using a wavelet filter. The post 
and pre-stimulus components of the waveform were 
separated, and then decomposed individually using a 
Daubechies scaling wavelet [6]. Davey [5] showed that 
by selecting only a portion of the post-stimulus 
waveform the accuracy of classification could be 
enhanced. Three possibilities were considered [5]. 
Firstly, all the post stimulus data was considered. Then, 
only waveforms I to V were considered, relating to data 
from 1.5ms post-stimulus to 9.5ms post-stimulus. 
Lastly, wave V was isolated and used, which related to 
data from 5ms post-stimulus to 9.5ms post-stimulus. 
That is, the most signification oscillations of the ABR 
were maintained, while eliminating certain artifacts that 
were observed to occur at time of stimulus and at the 
end of the recording. The same procedure was followed 
for the wavelet analysis, as shown in Figure 3. 

The wavelet decomposition required that the number 
of data samples be dyadic, therefore the samples needed 

to be extended to 256. Three methods [7] were 
considered for these experiments: 

• Zero Extension: the data is extended by zeros 
• Odd Extension: the data begins to repeat from 

the start of the waveform 
• Even Extension: the data is extended by a 

reflection of the waveform, i.e. sample N+1 is 
sample N, sample N+2 is sample N-1, etc. 

A comparison was made and it showed that using even 
extension provided moderately better results, as shown 
later on in Table 4. 
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Figure 3: Pre-processing of ABR waveform 

 
The decomposition was performed on the 256 input 

samples of data to seven levels, referred to as 
approximation level, A7, and detail levels, D7-D1. Each 
level produced coefficients that represented a frequency 
band of the test data. In total there were 256 coefficients 
produced as shown in Table 1. The higher the level, the 
lower the frequency band, and the lower the resolution 
(i.e. fewer coefficients). This enabled the separation of 
coefficients in levels D4, D5 and D6, which represent 
the frequency bands that dominate the ABR, that is, 
frequencies in the region of 200Hz, 500Hz and 900Hz 
[8]. Likewise, coefficients D1-D3 that represented the 
higher frequency components were excluded from the 
tests. 

 
Table 1: Wavelet Decomposition Levels 
 

Level Coefficients Number of 
Coefficients 

D1 [129:256] 128 
D2 [65:128] 64 
D3 [33:64] 32 
D4 [17:32] 16 
D5 [9:16] 8 
D6 [5:8] 4 
D7 [3:4] 2 
A7 [1:2] 2 

 
This research concentrated on the coefficients of 

band D4, although D5 and D6 were also considered. It 
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 was observed within D4 that there were obvious 
oscillations present in the post-stimulus coefficient set 
that were not present in the pre-stimulus case. Figure 4 
shows the plotted D4 coefficients from the post-
stimulus and pre-stimulus wavelet decomposition for an 
example showing a strong response to a 70dB stimulus. 
Figure 5 shows the same coefficients for an example 
where no stimulus was applied, using the same subject. 
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Figure 4: Key wavelet coefficients (70dB stimulus)  
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Figure 5: Key wavelet coefficients (No stimulus)  
 

It was considered that the ratio of the mean absolute 
values of the post-stimulus coefficients over the mean 
absolute values of the pre-stimulus coefficients would 
provide a useful response indicator. In the example 
given in Figure 4 this value was 82.6 for a 70dB 
stimulus, compared with a result of 0.83 for data from 
the same subject but with no stimulus applied. In 
summary, the closer the parameter is to unity the less 
likelihood of a response. Conversely, the greater the 
value from unity indicates a stronger response. 

There are latency changes in ABR as stimulus 
response diminishes (Figure 2), so it was supposed that 
allowing the wavelet to take different morphologies 
could provide useful information. That is, as the length 
of the wavelet scaling filter increases the latency of the 
oscillations change, so the conjecture was that different 
filter lengths would suit responses of different strengths 
and characteristics. Hence, a range of scaling wavelets 
was used from filter length 2 to 24 (even lengths only). 
Figure 6 shows the process followed to extract the 
coefficients. For each scaling filter the ratio of the mean 
absolute D4 post over pre-stimulus coefficients was 
calculated resulting in 12 values. This was repeated 
using three possibilities for post-stimulus data: 
• All post stimulus data 

• Waves I-V:  1.5ms to 9.5ms post-stimulus 
• Waves V:  5ms to 9.5ms post-stimulus 
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Figure 6: Feature Extraction 
 

When an expert is unsure if a response is present, 
repeat recordings, using the same conditions, are 
performed so that a visual comparison can be made 
between the waveforms. In a similar manner, Davey [5] 
used correlation of the repeat recordings in the time and 
frequency domain to help classify the waveforms. 
Within the wavelet domain it was noted that there was 
also a correlation between the coefficients of repeated 
tests. It was believed that this could provide useful 
information and three variations were considered. 
Firstly, the cross-correlation value of the D4 coefficients 
from repeat recordings was calculated. Then, it was 
considered that only the portion of the coefficients that 
best represented the ABR waveform would be used by 
an inverse wavelet transform to convert the data back 
into the time domain, whereby cross-correlation values 
would then be calculated on the reconstructed 
waveforms. This was done using the D4 coefficients 
and also for coefficients D4-A7. 

Tables 2 and 3 give a summary of the features 
extracted from the wavelet and time domain analysis. 
They were used as inputs to train decision trees to 
automate the classification. The Clementine data mining 
software system (http://www.spss.com) was used to 
model underlying relationships and features in the data 
using the C5.0 decision tree algorithm [9]. The rule set 
derived in the training of the decision tree gave insight 
into the features that dominated the classification and 
those that had no relevance.  

Even extension was used with only a scaling filter of 
length 6 for the wavelet decomposition as experiments 
showed this to give some of the most consistent results, 
although further analysis could be performed to support 
this. 
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Table 2: Extracted Features  
(R relates to post-stimulus data, N to pre-stimulus data) 
 

Feature Description 
Wavelet coefficients, scaling filter length 6, waves I to V 
Rd6, Rd5, Rd4 Post-Stimulus D6, D5, D4 
Nd6, Nd5, Nd4 Pre-Stimulus D6, D5, D4 
Wavelet D4 coefficient ratios, waves I to V 
WD_RNd4_wlt2 
WD_RNd4_wlt4 
… 
WD_RNd4_wlt24 

Ratio of post/pre-stimulus mean 
absolute D4 coefficients, for 
scaling filters of length: 2, 4, 6, 8, 
10, 12, 14, 16, 18, 20, 22 and 24 

WD_RNd4_wlt2_14 Averaging ratios for scaling filters 
2 to 14 

WD_RNd4_wlt2_24 Averaging ratios for scaling filters 
2 to 24 

Additional Features 
TD_RN_w1to5 Power ratio of post-stimulus 

(waves I to V) waveform over 
pre-stimulus waveform 

Stimulus level Stimulus applied 
 
Table 3: Features extracted from repeated recordings  
 

Feature Description 
Time domain cross-correlation (CCR) features  
TD_Pre_CCR Pre-stimulus part 
TD_w1to5_CCR Post-stimulus part: waves I to V 
TD_w5_CCR Post-stimulus part: wave V 
Wavelet domain cross-correlation of D4 coefficients 
WD_Pre_CCR Pre-stimulus coefficients  
WD_Post_CCR Post-stimulus coefficients 

WD_w1to5_CCR Post-stimulus coefficients:  
waves I to V 

WD_w5_CCR Post-stimulus coefficients:  
wave V 

Wavelet domain cross-correlation of reconstructed 
waveforms using only the D4 coefficients  
XWD_Pre_CCR Pre-stimulus part  
XWD_Post_CCR Post-stimulus part  
XWD_w1to5_CCR Post-stimulus part: waves I to V 
XWD_w5_CCR Post-stimulus part: wave V 
Wavelet domain cross-correlation of reconstructed 
waveforms using coefficients D4-A7 
X1WD_Pre_CCR Pre-stimulus part  
X1WD_Post_CCR Post-stimulus part  
X1WD_w1to5_CCR Post-stimulus part: waves I to V 
X1WD_w5_CCR Post-stimulus part: wave V 

 
Results 
 

A study was performed on the full dataset using the 
WD_RNd4_wlt2_14 as a feature for classification. A 
comparison was made between the three types of data 
extension. For each method the different formats for 
post stimulus data were analysed; all post-stimulus data, 
waves I to V, and finally, just wave 5. The results are 
presented in Table 4. All WD_RNd4_wlt2_14 values 

above a set threshold of √6 indicated a response. Values 
beneath the threshold were left unclassified. From Table 
4 it can be seen that the best accuracy was produced 
when even extension was applied using only waves I to 
V in the post-stimulus data. Hence, this was the set up 
used in stage one of the classification. 

 
Table 4: Using WD_RNd4_wlt2_14 feature on full data 
set with a threshold of √6  
 

Data Extension Type Average values 
Zero Even Odd 

All Post-Stimulus Data 
Total Classified 205.1 181.9 174.0 

Classified % 35.3 31.3 30.0 
Accuracy % 96.4 91.1 90.2 

Post-Stimulus Data 1.5–9.5ms 
Total Classified 214.7 191.3 191.6 

Classified % 37.0 32.9 33.0 
Accuracy % 95.1 97.6 97.1 

Post-Stimulus Data 5–9.5ms 
Total Classified 166.1 216.6 215.6 

Classified % 28.6 37.3 37.1 
Accuracy % 94.5 96.8 97.3 
 
The analysis in the time domain of the power ratios 

was repeated to ensure that the comparisons were made 
on the exact same dataset. Table 5 and Table 6 give 
results for the first stage of classification using the full 
dataset and a range of thresholds. It can be seen that 
using WD_RNd4_wlt2_14 provided marginally better 
results. At a threshold of 5, a quarter of the test cases 
were classified using the time domain feature 
TD_RN_w1to5 with two wrong interpretations. Using 
the wavelet domain feature WD_RNd4_wlt2_14 a third 
of test cases were classified, using a threshold of √5, 
with only 1 incorrect interpretation.  

 
Table 5: Time Domain Power Ratio Results: Waves I-V 
 
Threshold  Total Yes No % 

Correct 
% Of 
tests 

4 190 186 4 97.9 32.7 
5 146 144 2 98.6 25.1 
6 121 119 2 98.3 20.8 
7 104 103 1 99.0 17.9 
8 85 85 0 100 14.6 

 
Table 6: Wavelet Domain (WD_RNd4_wlt2_14) D4 
Ratio Results: Even extension, waves I-V 
 
Threshold: 
√ of value 

Total Yes No % 
Correct 

% Of 
tests 

4 237 233 4 98.3 40.8 
5 195 194 1 99.5 33.6 
6 167 166 1 99.4 28.7 
7 145 144 1 99.31 24.0 
8 132 131 1 99.2 22.7 

 
The 195 test cases, classified using 

WD_RNd4_wlt2_14 as the feature, were removed from 
the dataset. The remaining records were passed to a 
second stage of the classification process whereby 
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 additional features based on the cross-correlation (CCR) 
of repeat recordings were extracted and used to train a 
decision tree to aid the classification. In Table 7 a 
comparison was made between the time domain (TD) 
cross-correlation features and three variations of 
wavelet correlation features: 
WD: D4 Coefficients 
XWD: Reconstructed time domain waveform using 

D4 Coefficients  
X1WD: Reconstructed time domain waveform using 

D4-A7 Coefficients 
Table 7 shows example variations of decision tree 

inputs. Averages were calculated for all valid variations, 
that is, conditions where no features were selected and 
just the pre-stimulus feature was selected were not 
considered. The results given in Table 7 show that there 
is an increase in accuracy when using the time domain 
waveform reconstructed from coefficients D4-A7. This 
shows that the wavelet features provide comparable 
value in automated response detection. 

 
Table 7: Comparison of time domain versus wavelet 
domain correlation features (6-fold validation tests) 
 

Features used by 
decision tree: 

portion of ABR used 

Accuracy in Classification (%) 

Pre Post I-V V TD WD XWD X1WD 
   Y 71.8 68.7 61.8 73.8 
  Y  71.0 65.3 62.5 67.9 
 Y   64.2 61.4 61.3 69.3 
  Y Y 73.2 69.3 61.9 74.7 
 Y Y Y 73.8 70.9 62.1 73.9 
Y  Y Y 74.4 71.1 62 74.9 
Y Y Y Y 75.0 71.2 63.1 74.2 
Overall average over all 

valid variations 71.9 68.3 62.1 72.7 
 

The results in Table 8 show a varied range of input 
features to the decision tree. Tests 1 to 4 investigate the 
effect of WD_RNd4_wlt2_14 on the results in Table 7. 
The additional feature increased the accuracy when 
coupled with all the cross-correlation features, reaching 
an accuracy of 80% when coupled with the X1WD 
cross-correlation features. All the correlation features 
derived for both the time and wavelet domain were 
considered in Test 5, obtaining a 75.8% accuracy, which 
was enhanced further in Test 6 to 79.4% by including 
WD_RNd4_wlt2_14. 

Test 7 looked at the value of the individual wavelet 
D4 ratios (defined in Table 2) for each wavelet scaling 
filter length, resulting in an accuracy of 78.7%. These 
resulted in 12 input features, however, by looking at the 
rule set derived by the C5.0 algorithm it could be seen 
that scaling wavelet lengths 14, 22 and 24 were not 
included in the decision tree, and could thus be 
removed. The accuracy did not improve in Test 8 to by 
adding all the cross-correlation features derived from 
the time domain waveforms reconstructed by wavelet 
coefficients D4 to A7 (X1WD). 

The raw wavelet coefficients were also studied as 
potential features (Tests 9-12). From Table 8 it can be 
seen that by inputting the raw D4 coefficients for both 

the pre and post-stimulus waveforms that there were no 
significant findings. 
 
Table 8: Results using C5.0 Decision Tree Algorithm  
(6-fold cross validation tests) 
 

Test Features % 
Correct  

1 All TD CCR features WD_RNd4_wlt2_14 78.1 

2 All WD CCR 
features WD_RNd4_wlt2_14 73.8 

3 All XWD CCR 
features  WD_RNd4_wlt2_14 74.1 

4 All X1WD CCR 
features  WD_RNd4_wlt2_14 80.0 

5 
All TD, WD, XWD 
& X1WD CCR 
features 

 75.8 

6 
All TD, WD, XWD 
& X1WD CCR 
features 

WD_RNd4_wlt2_14 79.4 

7 

WD_RNd4_wlt2 
WD_RNd4_wlt4 
… 
WD_RNd4_wlt24 

 78.7 

8 

WD_RNd4_wlt2 
WD_RNd4_wlt4 
… 
WD_RNd4_wlt24 

All X1WD CCR 
features 78.4 

9 Rd6 (4 coefficients) Nd6 (4 coefficients) 61.1 

10 Rd5 (8 coefficients) Nd5 (8 coefficients) 60.7 

11 Rd4 (16 coefficients) Nd4 (16 coefficients) 52.0 
When applied to full data including  

high level responses classified in stage 1: 
12 Rd4 (16 coefficients) Nd4 (16 coefficients) 69.5 

 
 

Discussion 
 

Previous studies indicate that ABRs may be 
classified based on time and frequency domain features. 
In this paper it is shown that the wavelet domain also 
provides useful features for automated ABR detection. 
Using an extensive set of data comprising of high and 
low level ABRs from a wide age range, a study was 
performed on the use of wavelet decomposition to 
extract features to assist classification. The data set was 
the same as that used for a previous study that focussed 
on the time and frequency domain [5]. This enabled an 
accurate comparison to be made of the wavelet features 
detailed in this paper to existing methods.  

A high accuracy of 99.5% in classifying strong 
responses was obtained by using a power ratio derived 
from the mean absolute values for the D4 wavelet 
coefficients of the post-stimulus waveform over pre-
stimulus waveform. A threshold was set (√5) above 
which a response was indicated and the classified 
waveform was removed from the test set. The remaining 
waveforms consisted of lower level, threshold, and no 
responses conditions and hence would be more difficult 
to classify. Weaker responses may rely on repeated tests 
to allow cross-correlation values to be calculated and 
used as response indicators. This adopts the approach 
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 employed by experts when interpreting lower stimulus 
level recordings. 

Features were derived from the cross-correlation of 
wavelet coefficients from repeated tests. In addition, D4 
coefficients and also D4-A7 coefficients were used to 
reconstruct the ABR signals back into the time domain, 
from which cross-correlation parameters were 
calculated for the repeated recordings. It was believed 
that the smoothing of the ABR would enhance the 
features. A moderate improvement on accuracy was 
obtained when coefficients D4-A7 were used to 
reconstruct the ABR back into the time domain. 

A selection of features based on power values, raw 
wavelet coefficients and cross-correlation parameters 
were studied as inputs to train decision trees using the 
standard C5.0 algorithm. Results showed only slight 
improvements when using the wavelet domain cross-
correlation features over the equivalent time domain 
features. However, a highest accuracy of 80% was 
obtained when wavelet cross-correlation features were 
coupled with the time domain cross-correlation features.  

Using the raw D4 coefficients for the post and pre-
stimulus waveforms (scaling filter length of 6) did not 
provide useful feature information. 

  
Conclusions 
 

The features extracted from the wavelet domain 
provide some improvement over equivalent time 
domain features. In particular a third of the test cases 
displaying high-level responses were classified to a 
99.5% accuracy using the ratio of the post over pre-
stimulus mean absolute D4 coefficients. Using the 
power ratio in the time domain a quarter of the same test 
set was classified to an accuracy of 98.5%.  

Cross-correlation features were derived from the 
wavelet domain, and provided a minor increase in 
accuracy over the equivalent features in the time 
domain. Better results were obtained by combining the 
time and wavelet correlation features which resulted in 
an accuracy of 80%. 
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