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Abstract: Quantitative seismocardiography is a 
simple and non-invasive method of measuring 
compression waves generated by heart activity. It 
provides important information about the 
cardiovascular system. The first important 
information acquired from quantitative 
seismocardiogram (QSCG) is the pseudo-period rate. 
This paper focuses just on the detection of pseudo-
periods in the QSCG signal. Two methods of 
detection together with a method of sophisticated 
data preprocessing are presented. The results of the 
methods are demonstrated using real data. 

Introduction 
 
The QSCG device detects cardiac vibrations as they 

affect the entire body; the measuring sensors (solid-state 
accelerometers) are usually placed in the plate of the 
chair – additional instruments applied on the proband’s 
body are not required. The results of the QSCG analysis 
are usable in various clinical fields ([1], [3]). The first 
and most important step in the process of detection of 
significant characteristics of measured QSCG curves is 
to detect pseudo-periods in the signal regardless of the 
initial pseudo-period position. Other characteristics can 
be acquired by a relatively simple process over the 
appointed pseudo-period. This contribution deals with 
the preprocessing and automatic computer-based 
detection of beat pseudo-periods in middle-time QSCG 
records. Two independent approaches have been used to 
appoint the pseudo-periods – the first method is more 
precise and is intended for off-line QSCG analysis, the 
second method is easy, robust and is appropriate for 
real-time QSCG processing. 
 
Data Acquisition and Preprocessing 
 
For the development and evaluation of the proposed 
methods, we used 46 digital records of the QSCG, each 
5 min length. The probands were placed in the sitting 
position and during the monitoring only very light 
physical activity (such as PC keyboard typing) was 

allowed. The experimental data were acquired using a 
solid state accelerometer built into the chair plate. The 
actual sampling frequency was 500Hz, and the 
resolution of the A/D converter was 16 bits.  

Raw data acquired from a QSCG suffer from a wide 
range of imperfections. The most significant drawback 
of the device is its high sensitivity to unintentional 
movements of the patient. To gain important 
characteristics from the signal that would correctly 
describe the state of the patient, it is necessary to keep 
stable measurement conditions and especially to keep 
the patient in a motionless position for a long period. 
Typically, one reliable measurement takes about five 
minutes. It is obvious that for such a long period it is 
impossible for the patient to keep motionless. 
Unexpected motion which is unintentionally 
incorporated into the signal as an error is manifested by 
abrupt changes in the signal. 

Performing a correct measurement depends on a 
physician or another expert who should get the best data 
from the device for further processing. Such data has 
been acquired in cooperation with physicians. Hence, 
we were able to focus only on data processing. 

Due to the character and known origin of the data, 
we should pre-process them to obtain a unified form for 
further reliable processing. A typical error that damages 
the signal is the impulse noise. This is due to the device 
itself. Fortunately, this kind of error is easily removable 
by simple median filtering. In our case we used the 
median filter followed by a sliding averaging filter. In 
this way we have removed both the impulse noise due to 
the measuring system and slightly smoothed the signal 
for better work with it. 

Further, we calculated the trend of the signal by 
smoothing the signal over a long sliding window and 
consequently we subtracted the trend from the signal. In 
this way we removed part of the influence of the 
respiratory system. We emphasize that just breathing 
has a non-negligible influence on the signal shape 
because it is manifested by pressure (or actually by 
force) that adds to the actual signal we are looking for. 
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 Finally, we normalized the whole signal to zero mean 
and unit deviation. Such normalization is useful and 
justified because the zero mean is common also for 
abrupt changes due to the patient’s movement (position 
conservation – if the patient raised himself up he must 
later slump). The unit deviation is less justified but can 
be used because abrupt changes are fortunately far less 
frequent and thus does not significantly influence the 
deviation. Moreover, from the viewpoint of the solved 
task such normalization is fully adequate. 
 
Detection of Wrong Parts of Signal: A signal from 
seismocardiograph suffers from many fake signals. It is 
due to the fact that the signal is measured as a force 
(acceleration) and therefore each movement of the 
patient has a significant influence on the signal course. 
As the signal of interest is weak, it has to be gained. 
Therefore other disturbing signals are gained too that 
can lead to significant steep changes of the signal. If the 
patient moves his/her body the changes are easily 
detectable but the movement can be due to the breathing 
and other less important movements within the body. 
Such changes influence the signal but are worse 
detectable.  

One possible solution of the problem is to train a 
neural network on correct courses of the signal to 
predict the signal and consequently to try the neural 
network to predict the actual signal. As the actual signal 
can suffer from the above artifacts and the neural 
network does not incorporate these artifacts, the 
predicted will be with high probability wrong too and 
thus significantly different from the course. This 
situation is thus welcomed because provides 
information about differences between the predicted and 
actual signal. Is such situation occurs we can simply 
identify the wrong interval and exclude it from the 
signal for further processing.  

We used a multilayer perceptron neural network with 
one hidden layer and one output layer. The hidden layer 
has 30 nodes with sigmoid activation function and the 
output layer has single node with linear activation 
function. The standard backpropagation training 
algorithm has been used. We used three sets of data. 
One for training, one for validation and one for testing. 
The sets have been compiled from original data in the 
ratio 2:1:1. The whole data set has been compiled from 
single series of time values of the signal as 
consecutively shifted values within a window size of 50 
samples. The length of prediction is one sample at a 
time. More values is possible but the larger length of 
prediction the worse results. The length of prediction to 
10 future values is still fully acceptable. 
 
Methods 
 

Two original methods of detection are presented. The 
first method was developed for precise off-line 
detection of QSCG pseudo-periods. Automatic removal 
of misclassified pseudo-periods is incorporated into the 
method. The second method was developed for real-

time detection of QSCG pseudo-periods and important 
reference points inside the systolic complex. 
 
Method A for precise off-line detection, Enhancement of 
Pseudo-periods: The main and most significant task is 
to detect (appoint) beginnings and/or endings of the 
pseudo-periods. By having such distinct marks on the 
signal we can then easily deduct characteristics 
describing important features of the patient’s 
cardiovascular system for further evaluation by 
physicians. 

Looking at the signal, a person can relatively easily 
mark the beginnings and/or endings of the pseudo-
periods, see the top part of Figure 2. We can see that 
during one pseudo-period a large swing followed by 
lower ones occurs. The smaller swings are unimportant 
at this moment but worsen automatic detection of the 
significant swing. In the theory of signal processing, the 
square of the signal is often used to emphasize large 
peaks. In our case this is not possible because in this 
way we would generate fake peaks near the significant 
swing. This would be due to the large negative swing 
preceding the main positive swing and only the length 
of the raising edge for the main swing is utilized in the 
further described swing detection method. Hence, we 
use the cubic exponent in the power of the signal to 
conserve the pseudo-symmetrical character of the signal 
in accordance with the main swing emphasis. In this 
way we significantly scale the signal and therefore we 
re-normalize the signal back to zero mean (which 
remained almost zero) and unit deviation, see the top 
part of Figure 1.  

This method seems to be auspicious but applying this 
transformation to the whole signal course can cause 
some parts of the signal to become unbalanced. 
Therefore we suggest applying of the cubic power only 
on a short section (window) of the signal and after that 
to shift the window by one sample and repeat the 
transformation in the new shifted window. In this way 
we obtain many transformed signals that we cumulate 
and finally compute their average, see bottom parts of 
Figure 1 and Figure 2. Such a transformed signal is 
more balanced than by simple applying the cubic power 
on the whole signal. The sliding widow size should be 
as close to the actual average pseudo-period as possible. 
A shorter window enhances undesirable noise within 
pseudo-periods. On the contrary, a larger window 
depreciates the advantage of this method and it leads to 
the same results as when using the cubic power 
transformation applied to the whole signal. A re-
normalization of the transformed signal to zero mean 
and unit deviation is naturally also used. 
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Figure 1: Top: Simple Cubic Power of the Signal, 
Bottom: Composed Shifted Cubic Power of the Signal. 
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Figure 2: Top: Part of the Original Signal, Bottom: 
Composed Shifted Cubic Power of a Part of the Original 
Signal. 
 
Method A for precise off-line detection, Pseudo-period 
Detection: The actual method of detection of pseudo-
periods is based on detection of significant swings 
(enhanced by the method introduced above) and runs 
this way, see Figure 3. The signal is passed from left to 
right and the lengths of monotonic rises of the signal are 
computed. In this way we obtain plenty of lengths. We 
proceed from the fact that the largest monotonic rises 
signal just the most important swings within the pseudo-
periods and thus can be used to delimitate them. The 
significant lengths should thus correspond to important 
and visually recognizable swings of the signal in each 
pseudo-period. 

There is the question of how to appoint the threshold 
over which the lengths should correspond to the pseudo-
period swing. We proceed from the assumption that the 
pseudo-periods should have approximately a similar 
length (due to the sophisticated transformation 
described above). Therefore, we move the threshold 
from the minimum to maximum value of the monotonic 
rises and measure the deviation of the pseudo-period 
lengths normalized by their mean. For some thresholds 
there should be minimal deviation and therefore the 

corresponding time point should limit the pseudo-
periods, see Figure 4. 
 

 calculate lengths of 
monotonic raisings 

calculate pseudo-periods 
(pp) lengths 

for threshold =  
0 to 1 with 

small step do 

calculate deviation of pp 
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mean and store it 
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the deviation of pp lengths 
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Figure 3: Diagram of pseudo-period detection. 
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Figure 4: Deviation of pseudo-periods vs. threshold. 
 

At the moment we have the signal still with some 
excesses. These are due to incorrectly detected over-
abundant or on the contrary overlooked pseudo-periods, 
see Figure 5.  
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Figure 5: Pseudo-period length vs. pseudo-period index. 
 

The simplest way how to manage these excesses is to 
omit the whole interval but this will lead to the loss of 
part of the information. Another way is to attempt to 
recover the pseudo-period(s). Over-abundant pseudo-
periods are manifested by down peaks with two points 
on each peak on the graph of pseudo-period lengths. 
This is due to the fact that the split pseudo-period 
behaves like two smaller pseudo-periods. We can 
recognize this situation by simple threshold of the 
lengths and eliminate it by adding the corresponding 
lengths together. For the threshold a double value of 
deviation has been used. Similarly, overlooked pseudo-
periods can be also detected by threshold, this time in 
the top part of the course in the graph of pseudo-period 
lengths. The same threshold value as in the previous 
case has been used. Elimination of overlooked pseudo-
periods consists in splitting them into so many parts to 
prove similar lengths as neighboring pseudo-periods. 

The final processed signal after eliminating over-
abundant and overlooked pseudo-periods is depicted in 
Figure 6. 
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Figure 6: Pseudo-period length vs. pseudo-period index. 
 
Method B for robust real-time detection: While the off-
line method A is more sophisticated, method B is 
relatively simple and was developed for the detection of 
QSCG pseudo-periods in real time.  

The method is derived from a well-known and robust 
algorithm for QRS complex detection in traditional 
electrocardiograms (ECG), originally developed by 
Hamilton et al. The algorithm was based on the first 
derivative of the input signal and many thresholds and 
parameters are automatically adapted to individual 
changes in the input signal using sophisticated empirical 
rules. The results (position of the dominant – so-called 
R - wave) are obtained with some detection delay 
(above 200 ms). For details on the algorithm, see [2].  

For our purposes it is important that the initial values 
of many parameters are adjustable and by modification 
of these values the original method was slightly adapted 
to QSCG’s different curve morphology. Namely the 
following parameters were changed: (1) length of the 
first derivative from the original 10 ms to 80 ms, (2) 
length of the high-pass pre-filter from 125 ms to 350 
ms, (3) length of moving window integration from 80 
ms to 200 ms. Optimal values were selected 
experimentally in order to achieve the best detection 
results.  

Additionally, we developed a special backward 
searching process for the precise detection of the 
position of the I-wave and J-wave in each QSCG 
pseudo-period. 

The function of the whole algorithm is as follows: 
output of the traditional ECG QRS detector gives the 
rough position of the systolic complex inside the QSCG 
- candidate X. Then the specific morphology of the 
QSCG curve is utilized to backward search the position 
of the J-wave – we expect the first big negative peak in 
MTI samples (about 100 ms). If the detection is 
successful, we assign the position of the peak as the I-
wave; see Figure 7.  
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Figure 7: Backward local I-peak searching in the QSCG 
cycle. 

 
Finally we search forward for the position of the J-

wave, which we expect to be the first big positive peak 
in maximally MTJ samples (about 160 ms), see 
Figure 8. 
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Figure 8: Forward local J-peak searching in the QSCG 
cycle. 
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 For the peak-detection we used a very simple method 
based on the first difference (length 15 ms): when the 
transition from negative to positive value of the 
difference occurs, then the sequence is marked as a 
negative peak; the transition from a positive to negative 
difference means a positive peak. If searching for the J-
wave or the I-wave fails, candidate “X” is rejected and 
the algorithm continues without detection of the QSCG 
pseudo-period.  

The rejection of “candidate X” is very important step 
and it increases robustness of the whole detection 
procedure against the artifacts – see demonstration on 
the Figure 9. 
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Figure 9: Rejection of the false beat detection. We 
search backward from “candidate X3” for the first big 
negative peak. The I-wave must be recognized in MTI 
samples (about 100 ms), so in this case the detection 
was not successful. 
 

The false detection of the dominant “candidate X”, 
which is not a true QSCG cycle, was corrected by the 
proposed simple backward searching algorithm, because 
the morphology in the nearest neighborhood of the point 
X3 does not match the detection rules – backward 
searching for the I-wave in MTI samples was not 
successful, the false positive detection of the systolic 
complex was correctly rejected. 
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Figure 10: Result of the whole detection: false candidate 
X3 was correctly rejected. 
 

Results 
 

For the development and evaluation of the proposed 
methods, we used 46 digital records of the BCG, each 5 
min length. We focused our attention on correct 
detection of   I-wave and J-wave positions in these 
records. We performed a simple comparison of both 
methods with the results obtained from a human expert 
by visual observation of the digitized QSCG signal and 
manual placing markers in appropriate positions (I-
wave, J-wave).  For the results, see tab. I. The human 
expert placed markers in relevant positions in all cases; 
total number of detected (I, J)-pairs in all 46 records 
was 15641. Then we tested efficiency of the proposed 2 
algorithms (A, B) in the same situation. We evaluated 
the results of the automatic detection relatively in 
comparison with the results obtained from a human 
expert (assumed as 100% success). For example, the 
algorithm “A” correctly detected 15172 I-waves of total 
15641; it means 97%. 
 
Table 1: Evaluation of Proposed 2 Algorithms (A, B) 
 

 I-wave J-wave 

Human expert 100 % 100 % 

Algorithm A 97 % 95 % 

Algorithm B 94 % 93 % 
 
Discussion 
 

For high-quality measurements we can obtain good-
looking signals for which both methods exhibit 
excellent results. For disruptive and spurious signals 
there is still a good chance of obtaining authentic 
information because we first detect the impairments and 
remove the particular interval of the signal. It is true that 
in using this method we also remove certain useful 
information but simultaneously ensure processing of the 
remaining signal. We emphasize that we need not 
process all consecutive pseudo-periods in the signal but 
only a sufficient amount of pseudo-periods. 
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Figure 11: Typical QSCG signal with correctly placed 
reference points. 
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 For good-looking and typical signals, the methods 
behave very well, achieving nearly complete success 
(see Figure 11). The success decreases with 
deterioration of the signal. On the other way, in such 
signals it is often difficult even for the human expert to 
recognize correct pseudo-period time points (see 
Figure 12). 
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Figure 12: QSCG signal with the motion artifact; it is 
difficult to recognize correct positions of some 
reference points. 
 
Conclusions 
 

Two suggested methods were applied to the 
preprocessed signal. The first one is based on the 
observation that the longest monotonic raising should 
signalize the pseudo-period origin. Automatic removing 
of misclassified (overlooked and over-abundant) 
pseudo-periods is incorporated into the method. The 
second method is based on modified well-known 
Hamilton-Tompkins algorithm for QRS detection in 
traditional ECG, adapted to BCG’s different curve 
morphology; this method is prepared for operation in 
real-time.  
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