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Abstract: The aim of our study is to detect balance 

disorders and a tendency towards the falls in the 

elderly, knowing gait parameters. In this paper we 

present a new tool for gait analysis based on 

markerless human motion capture, from camera 

feeds. The system introduced here, recovers the 3D 

positions of several key points of the human body 

while walking. Foreground segmentation, an 

articulated body model and particle filtering are 

basic elements of our approach. No dynamic model 

is used thus this system can be described as generic 

and simple to implement. A modified particle 

filtering algorithm, which we call Interval Particle 

Filtering, is used to reorganise and search through 

the model’s configurations search space in a 

deterministic optimal way. This algorithm was able 

to perform human movement tracking with success. 

Results from the treatment of a single cam feeds are 

shown and compared to results obtained using a 

marker based human motion capture system. 

Introduction 

Referring to several studies, falls are the major cause 

of accidental mortality in the elderly. This could be 

considered as a serious problem in societies with 

growing age average, and thus, reducing the number of 

falls among seniors is becoming an objective for many 

research programs. Most of the falls occur during 

walking and several cross-sectional studies have 

revealed significant changes in gait patterns associated 

with advancing age. Many methods have been proposed 

to detect balance alteration in the elderly while walking. 

Menz et al. [1] use accelerometers attached to the body 

in order to evaluate the acceleration patterns at the head 

and pelvis. Those patterns would then be used to 

differentiate young and healthy people from old people 

with risks of falling. The GAITRite system [2] uses a 

pressure sensors carpet to measure many gait 

parameters in order to determine dynamic balance and 

predict fall risk. Depending on the aptitude of a person 

to accomplish combined physical-psychological tests 

(Tinetti, Berg, 8foot up and go), geriatricians can detect 

balance disorders. The purpose of our study is to 

propose a methodology and a technology to detect a 

tendency towards the fall of a senior, while observing 

his daily activities at home. In fact a personal dynamic 

balance indicator would be evaluated using the gait 

parameters values. In the case of a weak dynamic 

balance indication, rehabilitation programs could then 

be accomplished in order to lower the risk of falling. 

This approach was set up with the help of experts in the 

domain of geriatrics and rehabilitation. The originality 

of our approach generates many constraints to the 

methods and technologies used. Actually, attaching 

wearable sensors to the body is prohibited and the 

senior living environment should not be altered. Our 

system must be capable of evaluating the balance 

automatically without any human intervention. On the 

other hand, used sensors should be low cost. Knowing 

this, using video feeds from conventional cameras 

seems to be the most adequate way to measure gait 

parameters. In order to respect private life, no images 

should be transferred outside the senior’s home and the 

image processing will be done locally. In this paper we 

will present a new method to track body 3D motion, 

which respects the principles of our approach. 

 

Materials and Methods 

3D body motion capture 

An in-depth gait analysis requires the knowledge of 

elementary spatio-temporal parameters such as walking 

speed, hip and knee angles, stride length and width, time 

of support, among others. In order to obtain this 

information, a 3D human motion capture system has to 

be developed. Marker-based systems [3] have been 

widely used for years with applications found in 

biometrics. In typical systems, a number of reflective 

markers are attached to several key points of the 

patient’s body and then captured by infrared cameras 

fixed at known positions in the footage environment. 

The markers positions are then transformed into 3D 

positions using triangulation from the several cameras 

feeds, making it impossible to track a point’s motion 

when it is not visible by two or more cameras. However, 

using markers could be considered obtrusive. It also 

implicates the use of expensive specialized equipment 

and requires a footage taken in a specially arranged 

environment. Using video feeds from conventional 

cameras and without the use of special hardware, 

implicates the development of a marker less body 

motion capture system. Research in this domain is 

generally based on the articulated-models approach. 

Haritaoglu et al. [4] present an efficient system capable 

of tracking 2D body motion using a single camera. This 

might be used in many applications. However it is 

unable to provide 3D positions, restricting the 

information we can extract from the feeds. Bregler et al. 
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 [5] used gradient descent search with frame-to-frame 

region based matching and applied this method on short 

multi camera sequences. This method proved to be 

unable to track agile motions with cluttered 

backgrounds. On the other hand, locating body parts by 

matching image regions, risks to produce a drift in long 

sequences. Combining 2D tracker and learned 3D 

configuration models, Howe et al. [6] were able to 

produce 3D body pose from short single camera feeds. 

Gavrila and Davis [7] use an explicit hierarchical search, 

in which they sequentially locate parts of the body's 

kinematic chain (e.g. torso, followed by upper arm, 

lower arm and then hand), reducing the search 

complexity significantly. In real world situations, it 

seems to be hard to specify each body part in the image 

independently without using labels or colour cues. 

Sidenbladh et al. [8] use Condensation algorithm [9] 

with learned stochastic models and a generative model 

of image formation to track full body motion. The large 

number of particles used, makes this algorithm run 

slowly. Cohen et al. [10] tried to reduce the number of 

particles, using Support Vector Machine, to train body 

models. However, using dynamic models would restrict 

the generality of the approach and prevent the system 

from tracking gait abnormalities. Using multiple 

cameras feeds at a 60 frames/s capture, Deutscher et al. 

[11] produced the best known results to date in 3D full 

body tracking. Their approach was based on weak 

dynamical modelling and on annealed particle filtering, 

which is a complex modified Condensation algorithm. 

In fact, a multi layered particle based stochastic search 

algorithm was applied to reduce the number of particles. 

This algorithm uses a continuation principle. Applying 

this type of layered search augments the risks of falling 

into local minima, especially in the case of a lower 

frequency capture, and did not prove to reduce the time 

complexity in a significant way. 

Most of these methods were originally developed 

and used for character animation and do not meet the 

requirements of our study. In fact we need to extract the 

exact 3D position of several points of the human body 

in order to detect gait abnormalities, using conventional 

digital camera feeds (25 frames/s) only. Respecting 

these conditions requires conceiving a new simple 

algorithm. The method we present here is based on a 

simple modified particle filtering algorithm, which we 

call Interval Particle Filtering (IPF). Image foreground 

segmentation and 3D articulated body modelling are 

basic elements in our approach. 

The 3D articulated model and likelihood 

The human body will be represented by a 3D 

articulated model formed by 19 points or joints that 

represent key elements of the human body (head, 

elbows, sacrum, knees, ankles etc.).These points are 

joined up using 17 rigid segments. As in human body, 

each joint is given a number of degrees of freedom (3 

per joint maximum) representing the rotations about the 

3D axes (x, y, z). Due to restrictions on human body 

parts motion we can reduce the number of degrees of 

freedom assigned to each joint. This model should 

simulate the human motion. On the other hand, using a 

large number of degrees of freedom would increase the 

complexity of the methods used. In fact we opted to use 

a 31 degrees of freedom model which proved able to 

simulate approximately the body motion. For each 

degree of freedom, we define a range beyond which no 

movement is allowed. These constraints can easily be 

modified depending on the nature of the actions to be 

tracked. For example, in a standard walking situation, 

the leg’s rotation cannot take values greater than 60 

degrees nor lesser than -30 degrees. Due to the nature of 

the human body, our model is composed of kinematic 

chains; a body part whose movement implicates the 

movement of another body part, forms a kinematic 

chain with the latter. Our skeleton model is then fleshed 

out in a way to have a visually realistic body 

representation (Figure 1). 

 

             
(a)                               (b) 

 

Figure 1: Articulated Model; (a) The skeleton 

articulated model defined by 19 key points of the 

human body and 17 segments. This model is composed 

of 4 kinematic chains. Each point is given a number of 

freedom degrees (3D rotations). (b) The model is 

fleshed out by adding volumes around the segments. 

 

Deutscher et al. [11] combined a similar model with 

a dynamic modelling approach; in fact, they use a 

velocity model for each joint’s motion from the 

previous frame, in order to predict the body pose in the 

next frame, which restricts the capacity to detect sudden 

changes in movement if the frames are distant in time. 

Sidenbladh et al. [8] introduced trained dynamical 

models. Trained models are of great interest for robust 

tracking, but they force the real motions tracked to be 

similar to those observed in the training set. The use of 

these models would make it unable to detect the 

abnormal movements we are interested in, due to the 

fact that these movements would not necessarily be in 

the training set. In addition it seems impractical to pre-

train models for each possible situation and movement 

of the body. The use of trained models being in 

contradiction with the goal of our study, we decided not 

to use any. No dynamic model was used neither, which 

makes our approach simple and generic. 

Knowing the model pose established through its 31 

degrees of freedom configuration, we need to find a 

method to estimate how well this 3D pose fits with the 
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 real body pose represented in 2D through the video 
sequence. The degree of similarity between the real and 

the estimated pose will be evaluated using a likelihood 

function. In a particle filtering context the likelihood 

function is called weight. In marker-based systems, the 

markers positions in each camera’s image plan give us 

the real 3D positions of the markers. In some 

approaches [8] [10], texture mapping was used to 

realistically render body images. Despite the advantages 

it provides, creating this type of images would be 

specific for each person and the conditions of the video 

capture (light, clothes etc.). Edge detection and 

foreground segmentation were used to construct a 

simple and general likelihood function in [11]. We 

chose to use a simple foreground segmentation to 

construct our function. Actually, we construct a 

silhouette image by subtracting pixel by pixel the 

background from the current image and then applying a 

threshold filter. This image will then be compared to the 

synthetic image representing our model’s configuration 

(2D projection of our 3D body’s model) to which we 

want to assign the weight. After subtracting the 

synthetic image from the silhouette, the weight function 

will be calculated by: 

where: Nc = Number of common pixels between the 

silhouette and the synthetic image 

 Ns = Number of pixels representing the silhouette - Nc 

 Nm= Number of pixels of the synthetic image 

representing the model - Nc  

 

    
 (a)                (b)                 (c)                 (d) 

 

Figure 2: Estimating the likelihood; The input image (a) 

will be transformed to a silhouette image (b) by 

subtracting pixel by pixel the background image and 

then applying a threshold filter. (c) is the synthetic 2D 

image representing one of the 3D model’s configuration. 

In (d) we compare the synthetic image to the silhouette 

by subtracting the first from the second and evaluating 

the number Nc of common pixels, the number of pixels 

of the silhouette outside the synthetic image Ns and the 

number Nm of pixels of the synthetic image outside the 

silhouette.  

 

The choice of this function is motivated by the fact 

that we aim to find the model’s configuration that 

maximises the likelihood of its 2D projection to the real 

body pose. This can be interpreted by a higher Nc and a 

lower (Ns + Nm). In case of multiple cameras, the weight 

function w would be:  

where c is the number of cameras, and wi the weight 

deducted from the image of camera i. This method is 

simple and can be applied in any condition; however, it 

may present a little weakness in presence of heavy 

shadows. This problem can be solved by adjusting the 

threshold filter. 

Using Interval Particle Filtering 

Full body motion tracking can be treated as a 

Bayesian state estimation problem. Our 3D model pose 

is established through the configuration of the degrees 

of freedom values; This configuration can thus represent 

the state vector of the model. In addition to the state 

model, we define an observation, through which the 

likelihood of a state vector at t=tk is evaluated. In our 

approach, this observation would be the image of the 

person we are tracking and the weight of a configuration, 

would represent the observation probability. Deutscher 

[12] proved that the posterior density in human motion 

capture is non Gaussian and multi-modal. Particle 

filtering, also known as the Condensation algorithm [9], 

proved to be able to handle such type of non-Gaussian, 

multi-modal densities. In fact it can model uncertainty 

by transmitting less fitting state configurations at tk, to 

later time steps, and thus giving them a chance to be 

chosen. In a particle filtering framework, each 3D 

model’s configuration (31 degrees of freedom vector) is 

represented by a particle. For each particle a weight is 

assigned (as described earlier). The particle filtering can 

be viewed as a search for the best particle in a well 

defined particles set at each time step. 

In order to have a realistic state vector estimation, a 

certain number of particles are necessary. In a high 

dimensional space this number becomes relatively big. 

The use of a greater number of particles leads to better 

results. On the other hand, using more particles 

augments the temporal complexity of the algorithm, due 

to the fact that at each time step the weight for all 

particles must be calculated. The goal of all modified 

particle filtering algorithms is to reduce the number of 

particles needed, and this especially in high dimensional 

spaces, where the complexity could make the basic 

particle filtering algorithm practically inapplicable. 

Despite the high dimension of our state vector (31 

degrees of freedom), we opted to use a particle filtering 

algorithm, due to its capacity to handle the multi modal 

observation probability. In parallel, we modified the 

basic algorithm by introducing the Interval Particle 

Filtering that tends to reconfigure the particles search 

space in an optimal way. 

The Interval Particle Filtering (IPF) introduces 

simple modifications on the Condensation algorithm in 

order to optimise the particles search space 

configuration. These modifications are done in a way to 
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 preserve the advantages a particle filter offers. Neither 
dynamic modelling nor an evolution model was used. A 

single iteration per time step is accomplished, excluding 

any layered search. We preserve the 3 steps structure of 

the basic particle filtering algorithm at each time step tk : 

• Selection: The N particles set created at tk-1 is sorted 

by its weights. In this sorted set, a number of M 

distinct particles, that have the biggest weights, are 

selected.  

• Prediction: As we are especially interested in some 

specific elements of the state vector, we can 

dissociate it into 2 state vectors: the first one L 

containing the ‘interesting’ degrees of freedom and 

the second R covering the rest of the freedom 

degrees. Each particle is now represented by 2 

vectors instead of one. L is then updated and 

replaced by a multidimensional Interval (space) 

composed of I vectors covering a grid of vectors 

surrounding the initial vector L. This approach is 

inspired by the presence of physiological restrictions 

on the degrees of freedom evolution (e.g. maximum 

angular velocity of joints in human motion). As a 

result, each particle will be updated and replaced by I 

‘neighbour’ particles so as to cover the whole 

possible configuration space of the ‘interesting’ 

dimensions, closely surrounding the particle’s 

‘interesting’ dimensions configuration. For each 

particle, R is then updated by adding a white noise 

vector. The width of the interval and the number I of 

vectors depend on the nature of the system. A wider 

interval and a greater I provide more accurate results 

but result in greater computational cost. 

• Measure: This step remains unaltered; given the 

observation (image at tk), the weight for each particle 

is calculated and the new weighed particles set is 

propagated to be used at tk+1. The estimated state 

vector (body pose) at tk will be represented by the 

particle (the model’s configuration) having the 

greatest weight. 

In presence of restrictions on the state vector 

evolution, Interval Particle Filtering reorganises the set 

of N particles into M sub-sets each formed of I particles 

covering in a deterministic way the ‘neighbourhood’ of 

the j heaviest particle (j=1..M) at the previous time step.  

Results  

We use video feeds captured at 20 Hz, and due to the 

physiological constraints, we can define the interval 

width for each angle to be 10°. This means that the 

angle between two time steps (50 ms) can not evolve 

(positively or negatively) for more than 5°. If each 

interval contains 81 vectors and M=81 our algorithm 

will be running with 6561 particles. At each time step 

we can get the estimated 3D positions of the 19 points 

forming the articulated model and the estimated values 

of the 31 freedom degrees. The initialisation of the body 

parts configuration is done automatically. In fact an 

exhaustive search is applied to the initial set of particles 

in order to find the heaviest particle. This initial set 

contains N vectors configured as to cover a well defined 

grid of plausible configurations.  

We present results from video captures of three 

different subjects, moving in a normal environment. 

Those feeds were captured at 20 frames/s using a single 

commercial digital video camera. Image processing was 

done offline, using a P4 3GHz PC. It takes 20 seconds 

per frame (7 minutes per second of footage) to find the 

body origin 3D position and its parts configuration 

using Interval Particle Filtering. Despite being too far 

from a real time performance, our system runs faster 

than many other systems developed in the literature. 

The first set of images (Figure 3) shows a person 

walking in a straight line, with momentary occlusions. 

 

  
t = 0.0s                              t = 0.5s 

  
t = 1.0s                              t = 1.5s 

 

Figure 3: Results for a subject walking normally along 

a wall; despite the fact that the left leg is occluded in 

some frames, the algorithm was able to track the 

movement with success. 

 

  
t = 0.0s                             t = 0.75s 

  
t = 1.5s                             t = 2.25s 

 

Figure 4: Images showing a subject getting up from a 

chair, turning and then walking. This set of images 

illustrates the use of the body origin positioning 

algorithm we developed. The challenge in this feed is to 

determine the body origin position for the person while 

getting up and beginning to walk. 
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 The second set (Figure 4) shows a person getting up 

from a chair and then turning and walking. The 

difficulty here is to track the movement of the person 

while getting up, but the algorithm succeeded in it. The 

third set (Figure 5) shows a female subject walking in a 

random manner. The challenge here is that the legs are 

occluded by the subject’s skirt. However due to the use 

of IPF this difficulty has been surmounted. The last set 

(Figure 6) introduces a person walking randomly. This 

scene had also been filmed and treated by a Vicon 

system (marker based motion capture system) running 

at 100 Hz. Positions of some body points produced by 

our algorithm can be favourably compared to the same 

positions produced by the Vicon, as shown in Figures 7. 

 

  
t = 0.0s                             t = 0.5s 

  
t = 1.0s                             t = 1.5s 

 

Figure 5: Images showing a female subject wearing a 

long skirt walking randomly. Despite the fact that the 

legs were occluded in these images, our system is 

capable of recovering and estimating their positions. 

 

  
t = 0.0s                             t = 0.5s 

  
t = 1.0s                             t = 1.5s 

 

Figure 6: Sequence showing a subject walking 

randomly. This scene had been also captured by a 

Vicon system composed of 6 infra red cameras. 

Reflective markers were fixed to the subject’s body key 

points (the same key points of our skeleton model) and 

the results were compared to the results obtained using 

IPF algorithm (Figures 7). 

 

Figure 7.1: Longitudinal displacement x (calculated in 

the camera referential) of the right knee (for the subject 

appearing in Figure 6), estimated by IPF (in plain) and 

using Vicon system (in dotted). The two curves have 

similar shapes but the dotted curve is smoother. This 

can be explained by the differences in capture and 

treatment frequency (20 Hz for IPF, 100 Hz for Vicon). 

 
 
Figure 7.2: Longitudinal displacement x (calculated in 

the camera referential) of the right ankle (for the subject 

appearing in Figure 6), estimated by IPF (in plain) and 

using Vicon system (in dotted).  

 

 
 
Figure 8: Longitudinal displacement x (calculated in the 

camera referential) of the right ankle (in plain) and the 

left ankle (in dotted) estimated both by IPF. Many 

parameters could be extracted from this graphic, such as 

time of double support, step length etc.. 

Discussion 

The fact of using a single camera prevents us from 

seeing some body parts (which depends on the view 
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 angle) for a long portion of the footage and the 
movement of these parts could thus not be evaluated 

fairly. Using multiple cameras would solve this problem 

but implicates the complexity of calibrating and 

adjusting a stereo vision system. The system developed 

will be tested to analyse the gait of senior fallers during 

an experiment which will be held at a geriatrics 

department of a hospital. In fact the senior will be asked 

to follow a specially arranged path and the gait 

parameters would be evaluated and analysed in order to 

evaluate the pertinence of some variables. 

Conclusion 

In this paper we presented a new approach for 

marker less human motion capture from a single 

commercial video camera, based on a modified particle 

filtering algorithm. The aim of our study is to extract 

gait parameters from the feeds, and the results obtained 

compared to those of a marker based system were 

encouraging. The Interval Particle Filtering we 

introduced here, proved to give good results despite the 

high dimensionality of the state vector, even with 
occlusions. This algorithm is simple to implement and 

works with video feeds captured at any frequency and in 

any environment. Since we do not use any restrictive 

dynamic model, our approach can be also described as 

being generic. 
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