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Abstract: Our work aims at the reconstruction of 
three dimensional (3D) fluorescence microscopy 
images which are obtained from the Episcopic 
Fluorescence Image Capturing (EFIC) system. The 
images are of high resolution and exactly aligned in 
the z-axis making them ideal for producing volume 
data sets by virtual stacking of the images. However 
some of the fluorescence detected in any image of the 
block surface nevertheless originates from tissue 
within the wax. To correct this problem, the raw 
PSF was obtained from the experimental 
fluorescence microscopy images and a Gradient 
Descent Algorithm (GDA) was employed to model 
the Point Spread Function (PSF) of the EFIC. A 
minimum error between the target function and raw 
data was approached through an iterative solution. 
The modelled PSF was then combined with the 
Landweber deconvolution algorithm in order to 
restore the 3D data for reconstruction. 
 
Introduction 

 
Episcopic fluorescence imaging is based on capturing 
successive fluorescence images of the top surface of 
wax embedded biological specimens during serial 
sectioning. The images are of high resolution and 
exactly aligned in the z-axis making them ideal for 
producing volume data sets by virtually stacking them. 
The embedded tissue is visualised by virtue of its 
autofluorescence which varies according to cell or tissue 
type and provides a detailed view of morphology [1]. In 
order to ensure that the fluorescence detected at the 
block surface only results from the tissue at the block 
surface, dyes are incorporated in the wax embedding 
medium to supress fluorescence from any portion of the 
specimen below the surface. Whilst this is reasonably 
effective, some of the fluorescence detected in any 
image of the block surface nevertheless originates from 
tissue within the wax. Figure 1 shows a sample image 
stack (showing a region of a mouse embryo heart) from 
the XY (left) and XZ (right) planes. The tailed points in 
the XZ planes are the bright fluorescent objects which 
stay visible for many sections along the z direction. This 
compromises the quality of individual images and the 
resolution of 3D data sets. Deconvolution technique is 
an ideal method of restoring the out-of-focus blurr from 
fluorescence microscopy images. The point spread 
function (PSF) of an imaging system provides a 
complete, quantitative description of the imaging 

process and directly characterizes the image degradation 
within the system and needs to be known in advance. 
Measurement of the PSF based on an experimental data 
set has been developed before. Zhu et.al. and Razaz 
et.al. modelled the PSF from the raw data in X-ray 
diffraction [2] and Nuclear Magnetic Resonance (NMR) 
imaging [3,4]. Quabis [5] summarized experimental and 
theoretical methods to measure the PSF of microscope 
tomography. 

In this paper a novel algorithm is introduced to 
model the EFIC PSF. The interfering fluorescence from 
below the surface can be simplified into a diffusive 
motion-like blur along the z-direction. The 
approximation of the raw PSF is collected from the 
original 3D episcopic fluorescence microscopy images 
in the form of an isolated spot along the z axis. In the 
frequency domain, the optical transform function 
(OTF), which is approximated by a [sinc(x,y,z)], is used 
as a target function. The minimum error between the 
target function and the approximate PSF is approached 
by the Gradient Descent Algorithm (GDA). Using this 
approach, a reliable 3D restoration model is developed 
to remove the out-of-focus interference from the 
original image stack.  

  

  
Figure 1. Image slice in the XY and XZ plane 
 

Modelling and Mathematical Methods 
 

The process of deconvolution in an imaging system 
can be described by the matrix equation g = Hf+n [6], 
where H is a degradation matrix representing the effect 
of data blurring by the PSF, f is a vector representing 
the source image, g is the observed image and n is the 
additive noise [6, 7]. We can see from this equation that 
the knowledge of PSF is essential for formulating the 
matrix H and hence finding the source image f. In many 
cases H is very large and ill-posed making the 
restoration of f a non-trivial task.  

Several traditional mathematical formulas have 
been used to model the PSF such as  Gaussian or Bessel 
functions. Zhu [8] modeled the out-of-focus PSF using a 
two dimensional (2D) Motiff function. Whichever 
function is used to model the PSF of a microscopy 
imaging system, the PSF is always considered to be 
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 circularly symmetric. These types of PSFs can be used 
to model the out-of-focus effects commonly occurring 
in optical imaging systems. The modeled PSF is then 
combined with the deconvolution algorithms such as 
Maximum Likelihood Expectation Maximization 
(MLEM), Iterative Deconvolution Algorithm (IDA) [9] 
to restore blurred microscopy images. 

However, the PSF of an episcopic fluorescence 
imaging system is not symmetric around the focal point.  
Whereas in traditional microscopy the out-of-focus part 
of the PSF is on either side of the focal point, here it is 
on the one side of it (Figure 11). Therefore, the images 
obtained on the episcopic fluoresence microscope are 
aberrated along the z-axis with a diffusive, motion-like 
blurring. Traditional formulas used to model optical 
PSFs cannot be used in this case and the normal 
deconvolution algorithms can not be applied. Figure 2 
presents a schematic of the biological sample and the 
imaging process.  The biological tissue is fixed in a wax 
block. The top surface is photographed by the imaging 
system, a slice is then removed and the top surface is 
photographed again. The process is repeated through the 
whole wax block. The digital 3D image of the specimen 
is created by the rendering of the individual images 
from the top to the bottom along the z axis. The 
thickness of each slice is entirely determined by the 
experimenter and can vary between  1 and 10 µm. The 
actual fluorescence microscopy image obtained 
combines the surface image along with a proportion of 
the fluorescence from the structures underneath. 
Therefore the captured image is significantly blurred 
and the effective image resolution is reduced. In 
addition, the absence of clear edges in the data 
compromises its use for 3D visualization and 
reconstruction. These problems are demonstrated in 
figures 3 and 4 which show experimental image slices 
along the XY and YZ planes respectively. 

 

 
 
Figure 2. Schematic of a biological tissue embeded 

in the wax  block 

 
Figure 3. A raw fluorescence microscopy image from 
EFIC along the XY plane. The bright region is the 
fluorescence from blood within the embryonic heart. It 
is apparent that the XY resolution is significantly higher 
than the YZ (fig 4). 
 

 
Figure 4. Image of a 3D dataset along the YZ plane 
(side view) where each horizontal line represents one z-
plane.  The direction of successive cutting and image 
acquisition is from the top to the bottom of this image  
 

Before we design a restoration filter, the PSF of the 
imaging system needs to be determined.  

A theoretical spatial frequency amplitude transfer 
function for 3D objects can be modelled by a sinc 
function [10], as 
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In this paper, we focus on the problem of correction of 
the episcopic fluorescence microscopy images along the 
z direction. In the XY plane the size of the PSF can be 
assumed to be very small compared to the size along the 
Z direction, therefore xω and yω can be assumed as an 
infinite signal in the frequency domain, namely 
aδ function. Thus, equation 1 can be simplified into 
equation 2 and the optimization is reduced into a one 
parameter optimization. 
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In the frequency domain, the error function can be 

expressed as  
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where p(x,y,z) is the psf approximation extracted 
from the raw data. The function (Error(ω)) should be 
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 minimised with respect to the optical transfer function 
)(ωI . Figure 5 presents the flow diagram for the 

restoration of episcopic fluoresence microscopy images 
which is roughly divided in two steps, a) PSF 
determination and b) deconvolution. There are three 
steps to generate a theoretical PSF. The first step is the 
fourier transform of an isolated raw data image P(x,y,z) 
which is selected from the experimental image stack and 
contains a psf-like point (fig 11). The second step is 
application of GDA to obtain the optimum (ω) in the 
sinc function which minimises equation 3. The third 
step is the inverse fourier transform of the sinc function 
to get the theoretical PSF in the spatial domain. 
 

 
Figure 5. Flow diagram for the restoration of the 
episcopic fluoresence microscopy images. 
 

Although GDA needs more iterations than other 
optimisation algorithms, such as the conjugate gradient 
algorithm (CGA), it converges to the global minimum 
values in most cases. The raw data is fitted by 
minimising the summed square error between the target 
and original functions, 2)](ˆ][[∑ −= nynpE , and raw data. 
Gearhart [11] expanded sinc(ωx) as 
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Equation 4 can be expanded into a matrix 

expression  
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then we have 
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Replacement of ωXy =ˆ , ω is a weight matrix or 

vector and has parameters in the target function. 
Therefore, it has only one unique extremum where the 
first derivative of  E  with respect to ω is zero, assuming 
that XX T is not zero. 
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pXXX TT 1)( −=ω is not quadratic and hence the normal 

inverse does not exist. For this reason GDA is used to 
find the optimum solution and calculate the inverse 

matrix. The GDA is described below where α is an 
iterative step and ε is a tolerance. The algorithm is based 
on adapting parameters in the direction of the negative 
gradient of E. 
 

 
Figure 6.  The error is minimised when the slope of 
gradient is zero.  
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where α>0 is small enough to ensure EE ∆≈δ  
Substituting (8) into (9) gives 
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The −α term in equation 10 ensures that δE < 0. Then 
we can travel down the curve towards the minimum 
point as required (Figure 6). If we keep repeating these 
steps, we should approach the value ω* associated with 
the function minimum. The implementation of the GDA 
is summarised as: 
 
1 Initialise ω=ω0;   
2 Test ω1=ω0+∆ω In the first iteration set ∆ω=1; 
3 If dE/dω>0 then ω1=-ω1; if - dE/dω>0 then descrease ∆ω and 
   repeat 2 
4 ωi+1=ωi+α dE/dωi 
5 If Ei+1>Ei or dE/d(ωi+1)<ε then stop and go to end; 
   If Ei+1>Ei and dE/d(ωi+1)>ε; change α and repeat from 3 
6 End; 

 
This algorithm always converges to the minimum 

correctly, independently of whether the initial value (ω0) 
and next point (ω1) are on the same side or on either 
side of the minimum as shown in Figure (7a) or (7b) 
respectively. A reversed value -ω1 is used if the search 
direction is along the ascent slope. The reversed 
direction is the descent slope of ω∂∂ /E , see Fig. (7a). 
However, if the reversed ω1 is still along the ascent 
direction, (Fig. 7b), the minimum must be between ω1 
and -ω1. After the reversion of -ω1+ ∆ω, the minimum 
point can be approached from another side of the slope. 
The minimum point is found when either the gradient 
falls below tolerance (ε) or when any other point has a 
higher error, as would be the case at the minimum point. 

 
There are many deconvolution algorithms 

successfully employed to restore blurred 2D and 3D 
microscopy images.  Among those are the Wiener Filter, 
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 the nonlinear Maximum Likelihood Estimate and Zhu's 
Penalty Likelihood restoration of 3D confocal images 
[12]. Unfortunately, none of these can be used with 
asymmetrical PSFs because in the frequency domain, 
the OTF is not phase free and 'ghosts' will be introduced 
into the restored images. Therefore, in this paper we 
employed the Landweber deconvolution algorithm 
(LWA) which is an efficient algorithm to be used with 
asymmetrical PSFs. The detailed description of LWA 
can be found elsewhere [13-15]. 
 
 

 
(a) Searching in one side      (b) Searching in both sides 
       
Figure 7. Initial values for gradient descent algorithm 
 
Material and Methods 
 

The data images were collected with a Leica 
episcopic fluorescence microscope. The sample was the 
heart from a stage E14.5 mouse embryo tagged with 
green fluorescent protein (GFP). The excitation and 
emission wavelengths were 480-510nm and 520nm 
respectively (Leica GFPPlus filter set). The objective on 
the stereo microscope was a 1x Plan Apo lens which 
gives a field of view of 10mm×10mm in the XY plane. 
The size of the digital image was 700×700 pixels, 
therefore each pixel represents 14.2µm. The exposure 
time for each image was 1.5s. After each image was 
taken, a slice 2 µm thick was removed from the top of 
the wax cube. The total number of slices along the z 
direction was 100 and therefore the thickness of the 
cube was 200µm along the z-axis, with each pixel 
representing a thickness of 2 µm. 
 
Results and Discussion 
 

Reconstructing the 3D data, we notice that there 
are several bright points whose signal is visible through 
the tissue for 10-20 microns above their exact location 
(Fig 4). From the side view this is seen as a spot with 
smeared tail. The smeared tail is the unwanted 
fluorescent light originating from tissue beneath the 
surface of the specimen. It is however an ideal estimate 
of the system PSF. Therefore, an isolated tailed point is 
selected from the virtual YZ image as a raw PSF.  

 
 
 
 
 
 
 
 

 

 
(a) 1D plot along the original tailed point  in 

spatial domain 
 

 
(b) Magnitude part in the Fourier domain 

Figure 8. The original 1D signal in the spatial and 
frequency domains 
 

Figure 8 shows a 1D graph of the original PSF data 
in the spatial and frequency domains.  Figure 9 presents 
the original signal in the frequency domain and the 
modelled sinc function with an optimum ω (Fig.9b). 
Figure 10 shows the minimisation of log(error) with 
respect to ω. Figure 11 presents the original isolated 
point and the optimized sinc functions in the spatial 
domain. The modelled sinc function with the optimum 
ω will be used for the deconvolution of the 3D 
microscopy images. 

 
Figure 9. GDA modelled Sinc function 
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Figure 10. Plot of the error as it is minimised with 
respect to ω  

 

      
Figure 11. Original isolated point vs. theoretical PSF 

 

  
(a) Original image             (b) Restored image 

   
Figure 12. The 33rd slice from the original dataset and 
the LWA restored images using the GDA modelled PSF  
 

Figure 12 shows one of the original fluorescence 
microscopy images and its restored equivalent using 
LWA with the sinc(ω) modelled PSF. It is obvious that 
the restored image has better resolution and sharper 
edges than the original. As a consequence, the restored 
image is more valuable for 3D visualization and 
analysis. 
 
Conclusions and Future Work 

The PSF measurement or modelling of an 
imaging system is an important prerequisite to the 
design of an efficient restoration filter for the restoration 
of the degraded 3D microscopy images. In this paper, 
we analysed the degradation model of the episcopic 
fluorescence imaging system. We classified the 
degradation into a diffusive motion-like blur along the 
z-axis. However there were no previously published 
data on PSF modelling for such blur. In this work, we 
employed an optimization algorithm (GDA) and used a 
target function (sinc) to find the optimum parameter (ω) 

which is used to control the bandwidth of OTF in the 
frequency domain. The inverse fourier transform of the 
modelled sinc function provides the PSF of the EFIC in 
the spatial domain. The modelled PSF was then 
combined with the Landweber deconvolution algorithm 
to restore the 3D episcopic fluorescence microscopy 
images. The optimum parameter (ω)  for the sinc 
function was determined by finding the minimum error 
between the raw data and the target function using the 
GDA. The experimental results prove that GDA is 
indeed a reliable algorithm to find a global minimum 
value. 

In this work, we used one isolated spot in order to 
approximate the PSF from the orignal raw data. Future 
work will focus on finding the relationship of the 
parameter (ω) in the sinc function to the experimental 
parameters of the imaging system, such as the image 
resolution, objective lens, thickness of the slice, 
emission wavelength and exposured time. Based on 
these experimental parameters, the system should 
automatically generate a reasonable PSF, bypassing the 
need to find isolated spot-like features in the raw data. 
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