
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 AUTOMATIC DETECTION OF SLOW EYE MOVEMENTS  

BY DISCRETE WAVELET TRANSFORM 
 

E. Magosso*, F. Provini**, P. Montagna** and M. Ursino* 
 

* Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy 
** Department of Neurological Sciences, Polysomnographic Laboratory, University of Bologna, 

Bologna, Italy 
 

emagosso@deis.unibo.it 
 
 
Abstract: Electro-oculographic (EOG) activity 

during wake-sleep transition is characterized by the 

appearance of slow eye movements (SEM). In the 

present work, an algorithm for automatic 

identification of SEM episodes from EOG signal is 

developed. The algorithm is based on a 10-level 

wavelet decomposition of the EOG recording by 

using the Daubechies order 4 wavelet. Energies at 

each scale are used to build a discriminant function, 

which expresses the ratio between energies of high-

scale details and energies of both low-scale and high-

scale details. The main assumption is that the value 

of the discriminant function increases above a given 

threshold during SEM episodes because of energy 

redistribution towards higher scales. Parameters of 

the algorithm were tuned on three EOG recordings 

(training set), previously classified by human 

experts. Then, the algorithm was validated against 

visual scoring on other seven recordings (testing set).  

Performances are as follows: agreement = 80%; 

sensitivity = 67%; selectivity = 84%. However, most 

errors are not imputable to inability of the system to 

detect intervals with SEM activity against non-SEM 

intervals, but are merely due to a different 

collocation of the beginning and termination of some 

SEM episodes. The proposed method may represent 

a valuable support in the field of computerized EOG 

analysis.  

 
Introduction 

 

Detection of drowsiness is becoming increasingly 
important not only in normal humans but also for the 
diagnosis and research of several pathological 
conditions [1]. However, criteria for assessing the 
transition from wakefulness to sleep have not been 
standardized yet. Electro-oculographic activity (EOG) is 
considered a possible indicator of sleep onset [2-5]: 
indeed, EOG, during the transition from wakefulness to 
sleep, is characterized by the appearance of rolling slow 
eye movements (SEMs). SEM activity starts before the 
onset of stage 1 sleep, continues through stage 1, then it 
declines progressively during the first minutes of stage 
2.  

Visual inspection of EOG tracings for scoring SEMs 
is routinely performed in the clinical practice. However, 
visual scoring of SEMs suffers of inherent problems of 

inter-scorer variability: decisions of human scorers are 
unavoidably affected by individual bias. Moreover, 
visual inspection of EOG tracing during sleep requires 
much time and a high level of expertise.  

Despite these disadvantages of the visual scoring, 
only few works can be found in the literature facing 
with the automatic identification of slow eye 
movements [6]. Moreover, the previously proposed 
algorithms, based on filtering techniques, showed poor 
performances in detecting SEMs. The reason for this 
difficulty is that some SEM events have a transient 
nature being characterized by one oscillation period or 
less, hence showing a highly non-stationary behaviour. 
This makes their study by conventional methods (such 
as Fourier analysis) problematic. Therefore, automatic 
detection of SEMs may benefit from the use of the 
wavelet transform, which is a method specialized for the 
analysis of non-stationary signals [7-9].  

The purpose of the present study was to realize a 
wavelet-based method for automatic detection of SEM 
waveforms, with their start instant and duration. 
Wavelet transform is applied to bipolar electro-
oculograms, acquired in the context of polygraphic 
recordings. The EOG signal is decomposed at different 
scales, each scale associated with a time resolution and 
frequency band. The automatic detector is based on a 
discriminant function, which expresses the ratio 
between energy associated to low-frequency scales and 
energy associated to both low-frequency and high-
frequency scales. The algorithm was tuned on the basis 
of a training set of EOG recordings, on which two 
experts had previously marked the SEM events. Then, 
another set of previously classified recordings (testing 
set) was used to validate the method. 

 
Materials and Methods 

 
Clinical Material: 10 EOG recordings (indicated in 

the following by numbers from 1 to 10) acquired in 10 
male subjects during overnight polysomnography, were 
extracted from the database of the Centre for Sleep 
Disorders (Department of Neurological Sciences, 
Bologna). Two EOG channels (E1-A1, E2-A1) were 
recorded from electrodes placed according to the 
recommendation in the manual of Rechtschaffen and 
Kales [10]. Sampling rate was 128 Hz. Only a portion of 
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 each overnight recording session was considered for the 
analysis, from pre-sleep wakefulness to stage 2 sleep.  

Each of the ten EOG recordings included in the 
present project was first inspected separately by two 
human experts, to score SEMs, and then revised jointly 
to solve the disagreement. According to the clinical 
literature [2-5], the following scoring criteria for visual 
classification of a SEM event were established: i) slow 
sinusoidal excursion (0.2-0.6 Hz) lasting more than 1 s 
with amplitude above 20 µV; ii) binocular synchrony 
with opposed-phase deflections in the two channels; iii) 
absence of artefacts (such as blinks, EEG/EMG 
artifacts). Each event scored by the experts was filed in 
the computer memory, with its starting instant and 
duration.  

Detection algorithm: Goal of the algorithm is to 
identify automatically the start instant and the duration 
of each SEM event. The software program processes the 
data from the two EOG channels and consists of four 
main stages (see fig.1).  
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Figure 1: Block diagram of the automatic detector.  

 
In the first stage, the discrete wavelet transform is 

applied to the overall length of the EOG recording.  
For a given signal, s(t), initially represented by 

means of its coefficients at resolution 0, the wavelet 
decomposition can be written as follows: 
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cN,k represent approximation coefficients at level N, 

while dj,k j=1,…N represent detail coefficients or 

wavelet coefficients at level j. ψ(t) is the wavelet 
function, while φ(t) is a companion function, named 
scaling function. Wavelet functions describe signal high 
frequency components, while scaling function describes 
smooth components of the signal.  

Eq. (1) implements a multiresolution analysis of the 
signal, that is the signal is decomposed into N details 
(Dj, j=1…N) and one approximation (AN) at level N. 

Approximation is the residual function representative of 
all the higher scales of the signal, after the detail 
functions are computed.  

Extending decomposition over all resolutions levels, 
the complete wavelet expansion can be obtained: 
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According to Eq. (2), wavelet coefficients dj,k represent 

weighting factors for synthesizing a given signal from 

translated and dilated versions of a mother wavelet, with 

scale parameter a=2
j
 and translation parameter b= k2

j
. 

When the family {ψj,k(t) = ψ(2-jt-k)} forms an 

orthonormal basis, then wavelet coefficients can be used 
to compute energy associated with the detail j. The 
energy series associated to coefficient series dj,k is: 

2
k,jk,j dE = ,    (3) 

and the energy associated to the entire signal is: 
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In our application to EOG signals, we applied a 10 
level wavelet decomposition to the difference among 
the right and left EOG, by using Daubechies order 4 
wavelet, as mother wavelet. Daubechies order 4 wavelet 
was found to be the most appropriate because of its 
likeness to the event under analysis. The ten level 
decomposition is necessary to extract the frequency 
range of slow eye movements (typically 0.2-0.6 Hz). 

Figure 2 shows the 10 level decomposition of a 
small section of EOG (recording 2) containing an SEM 
event from t = 174 s to t = 234 s, according to the two 
experts. The 10 detail functions (‘D’) and the 
approximation function (‘A’) are reconstructed from 
wavelet coefficients and scaling coefficients, 
respectively. The original signal is the superimposition 
of details D1-D10 and approximation A10.  
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Figure 2: Portion of the EOG tracing belonging to 
patient 2 containing an SEM episode according to 
clinicians (between arrows), and its wavelet 
decomposition into 10 levels of details (D1-D10) and 

one approximation A10. The decomposed signal is the 

difference between right and left EOG. 
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 It is worth noticing, that in the figure, during SEM 
activity, details have maximum value in scales 8÷10. 

In the second stage of the algorithm, energy 
coefficients are computed from wavelet coefficients 
according to Eq. (3). Indeed, as shown in Fig. 2, during 
SEM activity the energy of the higher details rises, 
while that of lower ones decreases. This suggests that an 
appropriate function of energy at different scales can be 
built, which assumes high values in presence of SEM, 
and lower values otherwise. However, this function 
cannot be developed by using energy series as computed 
by Eq. (3), since detail coefficients have different 
density and localization on the temporal axis. In fact, 
since we are using a dyadic multiresolution analysis 
(i.e., the scale and translation parameter are based on 
powers of two), at every level of decomposition we get 
a half of the wavelet coefficients with respect to the 
previous level. This drawback of the dyadic scheme is 
overcome by processing energy coefficients (obtained 
by Eq. 3), in order to achieve uniformly distributed 
‘atoms’ of energy throughout all the scales, with each 
‘atom’ of energy positioned every 0.5 seconds. A time 
resolution of 0.5 s is suitable for detection of SEM 
events, since a slow eye movement lasts not less than 1 
s. Obviously, this procedure has been applied so that 
total energy associated to each level j is preserved. At 
the end of this process, we obtain energy series, Ej(n) (j 
= 1÷10), each representing the energy of detail j 
sampled every 0.5 s (i.e., at the instants tn = n·0.5 s). 

In the third stage, the energy series Ej(n) are used to 
define a discriminant function, which has the following 
structure: 
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where Wj are constant weights. The numerator is the 

weighted sum of energies associated to low frequency 
scales (7÷10); the denominator is composed by the 
numerator plus the weighted sum of energies associated 
to lower scales (3÷5). Hence, the discriminant function 
expresses a ratio of specific energy combinations at 
lower frequencies with respect to both lower and higher 
frequency components. The choice of considering scales 
7÷10 at numerator and 3÷5 at denominator was 
suggested by visual inspection of energy series obtained 
by wavelet decomposition of recording 1. When an 
SEM occurs (as marked by the two experts), energy 
associated to scales 7÷10 increases, while energy 
associated to scales 3÷5 decreases; the opposite occurs 
in absence of SEMs. Behaviour of energy series at scale 
6 is more ambiguous, hence it was not included in the 
discriminant function. Finally, scales 1 and 2, which 
capture high frequency components, were not 
introduced in the denominator, since high frequency 
noise can be superimposed over slow movements. 

Finally, the discriminant function f(n) obtained by 
Eq. (5) has been smoothed trough a 3 s moving average, 
to eliminate sudden variations, then compared with a 

threshold th: an SEM is marked by the computer when 
the smoothed discriminant function remains above the 
threshold for at least 1 s . 

Training of the Algorithm and Validation 

Procedure: Parameter values of the discriminant 
function (weights and threshold) were tuned by means 
of three EOG recordings (recordings 1-3, representing 
the training set). Then the tuned program was applied to 
the 7 EOG recordings (recordings 4-10) of the testing 
set, for evaluation of its performances.  

Both the training process and the performance 
evaluation are based on 2-sec epochs. Each EOG signal 
was split into 2-sec epochs. A 2-sec epoch is classified 
as SEM epoch according to the experts or to the 
computer analysis, if at least the 50% of this epoch is 
covered by an SEM event marked by the human experts 
or by the algorithm, otherwise it is classified as a NON-
SEM epoch. Then, as to the algorithm, all epochs were 
assigned to four categories: TP (true positive), TN (true 
negative), FP (false positive), FN (false negative). The 
categories TP and TN designate epochs for which the 
computer analysis has the same outcome as the human 
experts (TP for epochs classified as SEM and TN for 
epochs classified as NON-SEM); FP and FN correspond 
to mismatches (FN if SEM for the experts only, FP if 
NON-SEM for the experts only). Then, the following 
indices have been defined:  
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It is worth noticing that the 2-sec epochs have been 
used just to perform a comparison between the 
performance of the algorithm and the human experts. 
Computation of wavelet coefficients, of the energy 
series, Ej(n), and of the discriminate function, f(n), have 

always been performed on the entire signal, in order to 
avoid edge or boundary effects. 

The training of the algorithm, that is estimation of 
the weights and threshold of the discriminant function, 
has been obtained by optimizing the values of these 
coefficients on the training set, in order to minimize the 
overall disagreement between computer detection and 
visual detection. The overall disagreement is defined as 
the ratio between the total number of false epochs 
(throughout all the three tracings) and the total number 
of epochs composing the three tracings. The 
minimisation method adopted was the Nelder-Mead 
simplex algorithm. Table 1 lists the values of the 
weights and threshold.  

Performances of the algorithm have been quantified 
on the testing set by computing the agreement, 
sensitivity and selectivity indices for each of the seven 
tracings.  
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 Table 1: Values for the weights (W3-W10) in the 

discriminant function and for the threshold th, obtained 
with the minimization procedure of the disagreement 
index on the training set (records 1-3) 

W3 = 0.51 W4 = 1.04 1 W5 = 1.07 

W7 = 0.1 W8 = 0.15 W9 = 0.05 

W10 = 0.05 th = 0.85 

 
The entire algorithm was implemented using Matlab 

and the Wavelet Toolbox (The Mathworks, Inc., Natick, 
MA). 
 
Results 

 
Application of the tuned program to the testing data 

set produces the following performance indices, 
averaged on all the seven EOG tracings: agreement = 
80.44 ± 4.09 %; sensitivity = 67.2 ± 7.37 % and 
selectivity = 83.93 ± 8.65 %. 

Care must be taken in interpreting the values 
obtained for these indices. Indeed, goal of the algorithm 
is to identify the intervals of SEM episodes with their 
start instant and duration. Therefore, in the validation 
procedure, a simple partial overlapping between a 
visually-detected SEM event and a computer-detected 
event was not admitted and it gave rise to errors. More 
specifically, it is admitted only a temporal shift not 
longer than 1 sec between the visual and computerized 
detection. Most of the occurring FP and FN epochs are 
merely due to a different collocation in time of the 
beginning and ending of SEM episodes, whereas entire 
FP intervals or totally missed SEM events are very rare. 

An example of perfect functioning of the algorithm 
is presented in Fig. 3. The figure shows a 30-sec portion 
of left and right EOG belonging to patient 10, 
containing an SEM event according to the experts, and 
the corresponding pattern of the discriminant function.  
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Figure 3: Example of automatic SEM detection. Blu 
line: computer detected SEM; red line: visually detected 
SEM.  

 
In this case, a perfect agreement between visual 

scorers and computer detection occurs: indeed, the time 
shift between the visual and computer recognition is less 
than 1 second, both at the beginning and at the end of 
the event. Hence, nor false positive epochs, neither false 
negative epochs are generated. The computer detected 

SEM corresponds to the interval during which the 
discriminant function overcomes the threshold 
(indicated by the horizontal dashed line in the bottom 
panel). 

False negative and false positive detections arise 
from five different type of errors. Type I error: a brief 
SEM event detected by visual scorers is recognized as a 
longer event by the computer. This error originates FP 
epochs at the boundaries of the SEM episode. Type II 

error: an SEM event lasting several seconds is 
recognized as a shorter event by the algorithm, thus 
generating FN epochs. Type III error: Beginning and 
ending of the SEM event detected by the computer are 
both shifted in advance or in late with respect to visual 
detection. In this case, both FP and FN epochs originate. 
Type IV error: a prolonged SEM event for visual scorers 
is split into two or more brief SEM episodes by the 
algorithm. In this case, FN epochs arise. Type V error: 
Two or more consecutive SEM events separated by a 
short lag are recognized as a single prolonged event by 
the computer, thus producing FP epochs.  

Fig. 4 shows an example of type II and type III 
errors. Two SEM events are marked by the experts (red 
line) on recording 5. Both events are recognized by the 
automatic system (blue line) but with two different error 
types. The first SEM event is recognized only in the 
intermediated portion (type II error), producing false 
negative epochs (880÷882 s, 894÷896 s); the beginning 
and the end of the second SEM event are both 
anticipated by the computer (type III error), hence both 
a FP epoch (898÷900 s) and a FN epoch (904÷906 s) 
occur.  
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Figure 4: Example of type II and type III errors. Type II 
error is committed in detection of the first SEM event; 
while recognition of the second SEM event occurs with 
a type III error.  
 

Fig. 5 shows an example of type IV error. A 30-sec 
segment of recording 10 is displayed, containing a train 
of SEM waveforms lasting several seconds, according 
to the visual scoring. On the contrary, the algorithm 
identifies three separated and shorter SEM events: the 
unrecognized portions generate FN epochs (1098÷1100 
s, 1104÷1106 s, 1108÷1110 s, 1122÷1124 s). 
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Figure 5: Example of type IV error. A single SEM event 
lasting several seconds is recognized as three separated 
SEM events by the computerized system. Hence, 
several epochs are classified as false negative epochs.  
 

From the previous results, two main considerations 
can be drawn: 1) The discriminant function by itself is 
an adequate detector of SEM zones: by looking only at 
the temporal course of the discriminant function, even 
without defining any threshold value, zones where slow 
movements appear can be in general well identified in 
all the 7 examined recordings, since in these regions, 
f(n) tends to increase and to assume higher values; 2) 
Definition of a threshold level is necessary only to 
achieve a precise demarcation of SEM events detected 
by computer, with a start instant and duration. The 
threshold value, however, seems to depend on 
individual variability. For example, by decreasing 
threshold value in Fig. 5 (recording 10), a larger portion 
of the SEM interval marked by the experts would be 
recognized by the computer, thus converting false 
negative epochs into true positive epochs. Hence, the 
performances of the detection algorithm can be 
ameliorated by choosing a different threshold level for 
each subject.  

Therefore, performance indices were recalculated by 
using a different threshold level for each recording of 
the testing set, while maintaining structure of the 
discriminant function and weighting factors unchanged. 
For each subject, threshold level was chosen in order to 
minimize the percentage of disagreement between the 
computer classification and the visual scoring. 
Percentage of agreement and sensitivity increase 
respectively from 80% to almost 83% and from 67% to 
almost 81%, with selectivity remaining around 80%. 
Fig. 6 shows an example of detection improvement on 
recording 10 by using the optimized threshold value. 
The top panel shows the automatic detection when the 
threshold level is set at 0.85 (which is the value tuned 
on the training set). This result is the same as in figure 
5, and several FN epochs occur. When the threshold 
value is adjusted on the patient (th = 0.76, bottom 
panel), longer portion of the SEM episode are 
recognized and the number of FN epochs decreases. 
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Figure 6: Example of improvement of the automatic 
detection by using threshold value optimized on the 
single patient.  
 

Discussion 

 
Results presented in this paper reveal the capability 

of the multiresolution wavelet analysis to characterize 
SEM activity in EOG recordings. Decision of using 
wavelet transform for detection of SEM events in EOG 
tracings was based on the fact that SEM episodes show 
a highly non-stationary behaviour, which makes their 
study by conventional methods (such as Fourier 
transform analysis) problematic. Indeed, slow eye 
movements may have different duration, ranging from 
tenth of seconds down to few seconds. Longer episodes 
may be detected quite well by using traditional Fourier 
techniques; on the contrary, shorter episodes cannot be 
identified with accuracy because of the intrinsic trade 
off between duration and bandwidth. Wavelet method, 
which is devoted to the analysis of non-stationary 
signals [7-9], is surely more appropriate for detection of 
transient phenomena that may be even very short (such 
as SEMs).  

During SEM activity, a redistribution of signal 
energy takes place. Indeed, when SEMs occur, EOG 
shows an almost sinusoidal behaviour (0.2-0.6 Hz), with 
most of the energy confined in certain bands of low 
frequencies, corresponding to only some scales of the 
multiresolution analysis. Hence, we used a non-linear 
function of the energies associated to different 
resolution levels as discriminant function: such function 
is compared with a threshold level, above which 
detection of SEM events is accepted, and below which 
is refused. By using a unique value for the threshold, the 
method provides a percentage of agreement of about 
80%, a 67% sensitivity and a 84% selectivity. 

However, the validation procedure of the algorithm 
is not merely based on a simple partial overlapping 
between the computer-detected event and the reference 
SEM event, that is mismatches in start instant and 
duration give rise to FP and FN epochs. Such a 
validation criterion may be considered excessively 
severe if the main target of the algorithm application is 
just the distinction between intervals with SEM activity 
and intervals without SEM activity, whereas a precise 
identification of the beginning and duration of each 
SEM episode is not required. In these circumstances, the 
performance indices, as computed here, are misleading, 
and the automated system works better than it appears 
by looking at the values of these indices only. Indeed, 
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 the majority of disagreement between visual and 
computer decision occurs at the boundaries of SEM 
events visually detected (errors of types I-V in section 
Results). These kinds of errors do not avoid recognition 
of intervals with SEM events against intervals without 
SEM events. On the contrary, entire FP episodes or 
totally missed SEM events are very rare. Moreover, the 
discriminant function never falls during regular and 
high amplitude SEM activity, when it assumes values 
equal to 1 or very close to 1 (see Fig. 3-5); by contrast, 
mismatched epochs correspond to low-amplitude and 
less definite SEM activity.  

Hence, the pattern of the discriminant function is 
surely more useful and informative than the result of a 
simple “all or nothing” classification, obtained by using 
a deterministic threshold. Indeed, the value of the 
discriminant function can be interpreted as a score, 
ranging between 0 and 1, which quantifies the similarity 
of the present portion of the EOG tracing to an “ideal” 
or “certain” SEM event.  

However, a more definite identification of the start 
instant and duration of each SEM event may be 
important in some circumstances, for example to 
evaluate differences in distribution and duration of SEM 
intervals in different subjects or in different pathologies, 
or to trigger an alarm system in the case the automatic 
method operates in real time. If definition of a threshold 
level is necessary, threshold value could be optimized 
on every single patient by using a single EOG recording 
previously acquired on the subject, while maintaining 
the same discriminant function. Indeed, we observed 
that in same cases, performances of the automatic 
detector may ameliorate significantly if the threshold is 
adjusted on the particular subject.  
 
Conclusions 

 
The present work shows that wavelet decomposition 

is a suitable tool for detection of SEM episodes in EOG 
signals. Indeed, wavelets decompose signals at different 
scales distinguishing high-frequency behaviour from 
slower activity; hence they are particularly suitable in 
recognizing events with energy confined only in some 
scales of the multiresolution framework. By using the  
discriminant function, which expresses the ratio 
between energy associated to low-frequency scales and 
energy associated to both low-frequency and high-

frequency scales, SEM activity is characterized 
rigorously in terms of energetic feature. The same 
approach (based on energy function) can be used to 
detect other repeated waveforms in EOG, such as REM 
or spindles, characterized by energy redistribution. 
Hence, the present work may furnish important 
contributions in the field of EOG computerized analysis.  
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