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Abstract: The aim of this paper is to present analysis
of the mechanics of intracranial aneurysms and
description of factors leading to their rupture. The
general etiology of hemorrhages in the human body
is presented. The mathematical models for
intracranial saccular aneurysms based on Legendre
functions have been prepared and the curvatures of
aneurysms are compared to data received thanks to
the magnetic resonance angiography (MRA).
Moreover, minimisation of the difference between
the actual radius calculated from the MRA data and
the radius received from the Legendre-based
function is presented. Basing on the achieved results
the new approach to the possible reasons of the
aneurysm’s rupture is described. Therefore shape
and curvatures are more significant parameters in
the evaluation of aneurysm’s rupture than
dimension. Other results, including the comparison
between Newtonian and non-Newtonian fluid used to
simulate blood flow in the aneurysm and the
relationship between dimensions of the aneurysm
and wall shear stress are presented.                                      

Introduction

Intracranial saccular aneurysm (ISA) is a localised
distended sac affecting only a part of the circumference
of the artery wall. About 2-5 % of the population can
have ISA [1], but in case of a rupture 50-60 % of people
with an aneurysm may die [2]. Treatments used for
saccular aneurysms have a mortality rate reaching 18 %,
hence it is critical to determine the risk of the
aneurysm’s rupture very quickly [2].

The main point of the investigations and tests is to
determine the critical parameters for the risk of rupture.
Mathematical models of aneurysms are typically based
on Laplace's law which defines a linear relation between
the circumferential tension and the radius. However,
since the aneurysm wall is viscoelastic, a nonlinear
model was developed to characterise the development
and rupture of intracranial spherical aneurysms within
an arterial bifurcation and the model describes the
aneurysm in terms of biophysical and geometric
variables at static equilibrium. A comparison is made
between mathematical models of a spherical aneurysm
based on linear and nonlinear forms of Laplace's law.
The first form is the standard Laplace's law which states
that a linear relation exists between the circumferential
tension, T, and the radius, R, of the aneurysm given by

T = PR/2t where P is the systolic pressure. The second
is a 'modified' Laplace's law which describes a nonlinear
power relation between the tension and the radius
defined by T = ARP/2At where A is the elastic modulus
for collagen and t is the wall thickness. Differential
expressions of these two relations were used to describe
the critical radius or the radius prior to aneurysm
rupture. Using the standard Laplace's law, the critical
radius was derived to be Rc = 2Et/P where E is the
elastic modulus of the aneurysm. The critical radius
from the modified Laplace's law was R = [2Et/P]2At/P.
Substituting typical values of E = 1.0 MPa, t = 40
microns, P = 150 mmHg, and A = 2.8 MPa, the critical
radius is 4.0 mm for the standard Laplace's law and 4.8
mm for the modified Laplace's law [3].

Hence, the size is the primary parameter used for the
prediction of rupture of an aneurysm. Reasearches prove
that treatment is necessary for aneurysms larger than 10
mm, however, some small aneurysms less than 4 mm
are not stable and can rupture more often than the bigger
ones. Geometry of saccular aneurysms is not well
explored, and as the main predictor the height-to width
of an aneurysm (also called aspect ratio) is used [4].
According to tests performed by some scientists, the
surface of the aneurysm has properties alike membrane,
and it makes the curvature of a lesion a very important
parameter leading to rupture. Following this
assumption, it is necessary to calculate the curvatures in
a precise and quick way. Calculations of curvatures
have not been performed so far apart from some work
done by Sacks et al. (1999) on abdominal aortic
aneurysms, which included method for calculation of
curvatures based on MRA [5]. The new method of
calculation of curvatures by the means of Legendre
functions is proposed in the following section, and it
makes it possible to provide an almost real aneurysm
geometry.

Another aspect of modelling of saccular aneurysms
is determination of blood and lesion interactions.
Therefore it is essential to compare the Newtonian fluid
model, which mimics shear-thinning blood behaviour
and the non-Newtonian fluid model. The choice of the
model is necessary for determination of relationship
between the aspect ratio and the wall shear stress.

Finally, the impact of stent on the inflow in the
aneurysm should be taken into account. This impact is
described by the blockade ratio (Cα) and it facilitates
determination of rupture of an aneurysm for any stent
location [6].
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Materials and Methods

The computation of boundaries for aneurysms,
which data are received in the form of MRA films, by
the usage of splines and some modelling packages is
pretty time-consuming and it is rather impractical for
application during patient’s test. The aneurysms are not
ideal spheres, therefore I decided to use spheroidal
functions (Legendre functions), which guarantees
calculation accuracy and the possibility of alteration of
shape.

Legendre functions can be described by:

)()1()1()( 2/2 xP
dx
dxxP nm

mmm
n −−= (1)

where m and n are integer values, Pn(x) is a Legendre
polynomial and x is any argument. The boundary of the
lesion can be described by:

 ))cos()(cos1( θφβ mPcr m
n ⋅⋅+= (2)

where r is the radius, ø is from [0,π] and θ is from
[0,2π]. ø and θ are angles in spherical coordinates, Pn

m

is the Legendre function of the first kind, and β, c, n and
m are shape parameters. The shape can be defined for
any value of ø and θ, if the center point and the equation
for radius are determined.

The variation of β changes the overall size of the
figure and the variation of c changes the shape of the
figure. Therefore the higher value of c, the bigger
distortion of an aneurysm from a spherical geometry.

The exemplary shapes of aneurysms were presented
below:

Figure 1: Shape of an aneurysm based on Legendre
functions with n=3 and m=0.

  
Figure 2: Shape of an aneurysm based on Legendre
functions with n=3 and m=0 and c=0.4.

Firstly, the Legendre polynomials are transformed
from spherical (r, ø, θ) into Cartesian (x, y, z)
coordinates,
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and then every component is multiplied by a scalar (αx,
γy, δz),

zkyjxiR δγα ++= (5)
This operation stretches the spheroid in three directions.

The difference between the actual radius and radius
of an aneurysm calculated from the Legendre functions
shall be minimised. The Marquardt-Levenberg
regression code was used in order to determine
parameters that minimise the sum of squares error
(SSE), defined as:

       ∑ −= 2)( thrrSSE (6)
These parameters m, n, c, α, γ, δ, β, x0, y0, z0, rot 1,

rot2, rot3. α, γ, δ are the stretches in the x, y and z
directions, x0, y0 and z0 define the center of the
spheroid, and rot1, rot2 and rot3 define the Euler angles
for the rigid rotation of an aneurysm shape.

The root mean squared error (RMS) is used as the
error criterion and is given in milimeters (mm),

        MSERMS = (7)
    where

       
N
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The main point of the tests is the calculation of
curvatures. The calculations of curvatures for Legendre
spheroids were performed in MATLAB, while
curvature maps were presented in Maple. According to
the previously defined conditions the following can be
determined:
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 The infitesimal movement on the surface is defined by:
   φθ φθ dRdRdR ,, +=       (10)

where R,θ and R,ø are the base vectors:
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∂

=
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The curvatures are calculated as the maximal and
minimal values of Kn, which is called the normal
curvature and is strictly related to the curvature vector
k:

     nKk nn −=       (13)
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 where kn is the normal component of the curvature
vector, defined by:

   tn kk
dS
dtk +==       (14)

The impact of kt is not taken into account in this
paper. n and t are perpendicular, and after taking the
derivative with respect to S, the following is obtained:

   0=⋅+⋅ n
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dtt
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      (15)

Kn can be defined as:
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where:
   φθ φθ dndndn ,, +=

      φθ φθ dRdRdR ,, +=
(17)

Finally Kn can be expressed as [7]:
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where E, F and G are defined as:
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and L, M and N are second fundamental magnitudes:
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The formula for Kn can be modified by defining
direction λ as  λ=dø/dθ:
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The maximal (η1) and minimal (η2) values of the normal
curvature were received upon calculation of dKn/dλ=0 as
follows:
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where  λ1 and  λ2 are the directions of the maximal and
minimal curvatures. 
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Results

Modelling of aneurysm by the usage of Legendre
functions makes it possible to improve on RMS values.
The average RMS values for five aneurysms, which
data were taken for calculation from MRA films, were
0.45 mm for the standard Legendre function, and 0.77
mm for the sphere. Therefore the general improvement
is about 42 %. The further improvement of 2 to 12 %
was achieved thanks to the modification of the Legendre
function by scalar multiplies. The results of optimisation
are presented in the following table by the comparison
of RMS values for unmodified Legendre spheroid
(values were obtained by the Marquardt-Levenberg
search algorithm) and modified (by scalar multiplies)
Legendre spheroid.

Table 1: Comparison of RMS values for two kinds of
Legendre spheroids. 

AneurysmParameters and
criteria unmodified modified

c 0.29 0.0099
beta 4.01 2.1185
m 1 2
n 2 4

alpha 1 1.71
gamma 1 2.63

delta 1 1.17
x0 0.08 0.03
y0 0.09 -0.1044
z0 0.06 0.0476

rot1 -1.3 0.7055
rot2 -1.47 0.025
rot3 -1.15 -1.75

RMS (mm) 0.4015 0.3667
improvement over

unmodified 8.67 %

 
The modified Legendre spheroids are shown in the
figures below, and the minimal and maximal values of
curvatures are bordered by different colours by the
means of Maple.

Another important field of my researches is
estimation of blood flow in the aneurysm by using
aspect ratio        
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 where H is the height of the aneurysm and D is the
width of the aneurysm.

Figure 3: Maximal curvature values η1, ranging from
0.2 to 0.46 for the exemplary aneurysm.

Figure 4: Minimal curvature values η2, ranging from
0.14 to 0.32 for the exemplary aneurysm.

Basing on the Ujie [8] conclusion it was important to
determine the relation between the aspect ratio (AR) and
the wall shear stress. Ujie confirmed that an aneurysm
with AR > 1.6 has a recirculation region inside the

aneurysm, while the aneurysm with AR < 1.6 has no
recirculation region and blood can pass through the
aneurysm. The tests prove that aneurysm of large AR,
but smaller than 1,6 have smaller wall shear stress than
aneurysms of AR close to 0.5. The wall shear stress of
the aneurysm normalised against that of the rest of the
region decreases, if the aspect ratio increases. The
relationship between AR and wall shear stress is
presented below:

Figure 5: Relationship between aspect ratio (AR) and
normalised wall shear stress.

The above described research did not require the walls
of the aneurysm to be elastic, as the aim of the research
was to estimate the morphological impact on the
hemodynamics and therefore rigid walls and Newtonian
flow of blood were assumed.

Acceptance of initial assumptions is essential,
because some tests prove that the Newtonian model and
the non-Newtonian model do not differ too much.
Numerical tests in a two-dimensional symmetric
bifurcation with a non-symmetric aneurysm show that
difference in velocity field between non-Newtonian and
Newtonian model is small. Experimental comparison of
56 % aqueous solution of glycerol solution and 0.07 %
Separan solution with shear-thinning properties similar
to blood gave comparable results [9], [10].

Another important problem related to modelling of
saccular aneurysms is effect of treatment on the changes
of aneurysmal flow. Nowadays, the rupture of saccular
aneurysms is prevented by intravascular stenting.
Therefore the right placement of stents is crucial for the
eventual formation of thrombus inside the aneurysm and
finally for eliminating of aneurysm from cardiac
circulation [11]. The impact of the stent on the flow
inside the aneurysm can be effectively described by the
blockade coefficient:

   
L

Ndc =α       (25)

where N is the number of stent loops, d is the diameter
of the wire and L is the length of the stent. The most
important aspect of design of stent is analysis of the
blockade coefficient in relation to wall shear stress and
total strength inside the aneurysm [12]. My tests of the
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 blockade coefficient proved that the risk of aneurysmal
rupture is the smallest, if stent is placed like helix and
and Cα amounts to 75 %. Moreover, the effect of the
blockade coefficient on the flow inside aneurysm is
worth checking. The average value of the wall shear
stress after putting the stent of the blockade coefficient
of 75 % decreases to 51 % of the value for aneurysm
without inserted stent.

Discussion

Modelling of saccular aneurysms is an important
basis for the future treatment and rupture prevention of
aneurysms. Therefore the proper shape shall be
assumed, as the sphere is the too simplified curvature.

According to international researches on intracranial
saccular aneurysms the size cannot be used for
prediction of risk of rupture in aneurysms of diameter
less than 10 mm [13]. Thanks to the usage of Legendre
spheroids it is possible to evaluate curvatures at any
location of an aneurysm. As it was stated in the section
of results, the general improvement of RMS values for
the standard Legendre function is about 42 % in relation
to the sphere. The average improvement rate of RMS
value in case of modification of Legendre spheroid was
2 to 12 %, however the maximal improvement of η was
37 %. The model of an aneurysm based on Legendre
function can be still modified, as RMS values for the
modified Legendre spheroid are as big as 0.85 mm
comparing to 0.2 mm resolution of MR and 0.4 mm of
SOMATOM Sensation 64 CT scanner.

The main fault of the Legendre spheroid is the
smoothing effect of the surface of a lesion, hence the
curvature values of the Legendre spheroid do not differ
too much. Although splines can be used for evaluation
of curvatures, they increase computation time to 9-10
hours, which makes it an almost impractical method.
The computation time for the Legendre spheroid is
about 3 minutes, while for the modified Legendre
spheroid amounts to about 40 minutes. More complex
functions than Legendre functions will be tested in the
future in order to eliminate smoothing effect and
decrease RMS.

Conclusions

  Since vascular changes are sensitive to minor
changes in the environment, these changes can be
controlled by modelling of saccular aneurysms.
Aneurysms resemble membranes and their stresses can
be managed by local curvatures. The shapes are not
ideal spheroids, therefore the application of Legendre
function is the correct solution. Thanks to the usage of
Legendre spheroids the RMS values can be reduced of
up to 40 % and even more. The Marquardt-Levenberg
search algorithm was also used. The computation time
is reasonable for the Legendre spheroids, which
predispose them to modelling of lesions. Nevertheless
the size of aneurysm shall be taken into account as well,
as there is relationship between the aspect ratio (AR)

and normalised wall shear stress. Such a relationship
makes it possible to classify aneurysms which are more
prone to ruptures.

The choice of the initial conditions is essential for
simplification of further calculations, especially if blood
flow is analysed.

Finally, the impact of stents used to harbour
aneurysms on blood flow and wall shear stress inside
the aneurysm is worth testing. The critical value for
which the probability of aneurysmal rupture is slight
was found and there is a need to look for critical
relationships between stent, vortical flow and wall shear
stress for different shapes of stent.                      
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