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Abstract: Most brain-computer interfaces (BCIs) use 
the electroencephalogram (EEG) to measure brain 
activity. Alternatively, the electrocorticogram 
(ECoG) can be used, which provides better signal 
quality, but requires the implantation of subdural 
electrodes. Considering recent advances in signal 
processing, one might argue that employing modern 
spatial filters that can considerably improve signal 
quality and therefore the utility of EEG (as 
compared to ECoG), renders the ECoG unnecessary 
for BCIs. To investigate this, we applied spatial 
filtering methods to EEG and ECoG data for the 
discrimination between movement-related activity 
and background activity. From the results achieved, 
we cannot conclude that modern spatial filters make 
it possible to abandon invasive methods like ECoG in 
favour of EEG. Clearly, ECoG does have the 
disadvantage of being invasive, but our results show 
that significant gains remain possible by using this 
recording method. 
 
Introduction 
 

A brain-computer interface or direct brain interface 
is an assistive device that detects and interprets neural 
activity and translates this activity into computer 
commands [1]. The ultimate goal of such an interface is 
to provide effective communication without using the 
normal neuromuscular output pathways of the brain, but 
by accepting commands directly encoded in 
neurophysiological signals. For people suffering from 
locked-in syndrome, a medical state in which they have 
lost all voluntary muscle control, a BCI can be their 
only means of communication with their environment. 
Obviously, brain-computer communication is vital for 
people with such severe motor disabilities to increase 
their quality of life.  

A variety of methods for recording brain activity 
might serve as the basis for direct brain-computer com-
munication. The EEG is the most often used recording 
method, and although it is non-invasive and thus readily 
available, it has a number of disadvantages. These 
include poor signal-to-noise ratio, reduced spatial 
resolution, and susceptibility to artifacts, which are 

limiting factors for the performance of brain-computer 
interfaces. An alternative recording method is the 
ECoG, which has been used by far fewer research 
groups, primarily because it requires the implantation of 
subdural electrodes.  The close proximity of the ECoG 
electrodes to the cortical surface, however, alleviates 
some of the limitations of the EEG. For instance, since 
there is less spatial summation and phase cancellation, 
brain activity at higher frequencies (gamma activity) 
can be recorded. These brain patterns, which are usually 
not present in the EEG, may be utilized to improve the 
detection rates of brain-computer interfaces [2]. 
Furthermore, artifact free signals can be relatively easily 
obtained with ECoG recordings. 

Regardless of the type of signals utilized, direct 
brain to computer communication requires clearly dis-
tinguishable patterns of brain activity which can be 
identified by a computer system. Recent advances in 
signal processing have provided new powerful 
techniques (so called spatial filters) that can 
significantly improve the SNR  of multi-variate signals. 
We combine these spatial filters with feature extraction 
and feature selection methods to improve the 
performance through a more stable representation or the 
removal of redundant or irrelevant information [3]. In 
fact, feature selection is necessary since the temporal 
and spatial distribution of patterns suitable for 
classification can vary between individuals – especially 
in ECoG data. A priori knowledge of most appropriate 
channel locations and features that describe the 
underlying patterns leading to optimal performance is 
seldom available. Consequently, feature selection 
methods are required to find an optimal feature set, or at 
least a good approximation therefore, for the 
classifcation task at hand.  

In this work, we employ such techniques to 
discriminate between activity periods containing 
movement-related patterns and idling periods in EEG 
and ECoG recordings. By comparing the classification 
results, we attempt to assess the potential of ECoG 
recordings for direct brain-computer communication.  

We chose to evaluate results involving classification 
of activity versus idling because it is more difficult than 
differentiating between two spatially distinct tasks such 
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 as left and right hand movement. Additionally, results 
produced from spatially distinct tasks are generally 
already very good leaving little room for improvement 
by the application of spatial filters. Furthermore, in-
vestigating this problem has important implications in 
the development of asynchronous (self-paced) BCI 
systems, where it becomes neccessary to differentiate 
between activity and idling [4]. Developing accurate 
methods to deal with this problem leads to the 
development of more natural easy to use interfaces since 
users can elicit commands to the system whenever they 
wish to. In other words, by focusing the study on 
differentiating between idle versus activity, the results 
were more appropriate for consideration of improve-
ment with spatial filters and also provided useful 
insights for the development of asynchronous systems. 

Although imagination of movement activates similar 
cortical areas and shares some similar temporal 
characteristics with the execution of the same 
movement [5, 6], it is important for the design of a 
practical BCI to ensure that a system developed using 
real movement does not rely on patterns which are more 
pronounced or more easily detectable than in movement 
imagery. Under this constraint, movement-related 
patterns can be employed for initial research on the 
development of a BCI, which is an advantage since they 
produce well-defined trigger signals that indicate their 
occurrence and provide a means to assess detection 
accuracy.  Therefore, in this study, the investigation of 
the activity periods was limited to the time period no 
later than 0.5 sec after movement onset, where the 
patterns associated with real and imagined movement 
are known to be similar.  
 
Materials and Methods 

 
ECoG recordings of  6 subjects who participated in 

an epilepsy surgery program were used in this study. 
The subjects involved were either under evaluation or 
undergoing surgery for alleviation of intractable 
epilepsy. Up to 126 subdural electrodes were implanted 
on the surface of the cerebral cortex of each patient to 
record seizure activity and map cortical function. The 4 
mm diameter electrodes were oriented in grids and 
strips, with a  center-to-center distance of 1 cm [7]. 
Electrode palcement was selected solely for the purpose 
of the epilepsy monitoring without regards for BCI 
research, and electrodes were not necessarily located on 
motor cortex. The ECoG signals were recorded with a 
sampling rate of 200 (400) Hz and filtered between 0.05 
and 100 (200) Hz. Each subject participated in short 
BCI research sessions, where  they performed brisk 
middle finger movements in a self-paced manner with 
about 150 repetitions with resting (idling) periods of at 
least 6 seconds between successive repetitions. 

The EEG data from six healthy subjects was recor-
ded from a grid of 59 monopolar Ag/AgCl scalp elec-
trodes referenced to the left mastoid. The closely spaced 
electrodes with distances of approximately 2.5 cm were 
placed in a configuration including the electrode 

positions C3, C4, Cz, Fz and Pz of the international 10–
20 system. Figure 1 shows the positions of the 
electrodes. The EEG signals were filtered between 0.05 
and 50 Hz with a sampling rate of 250 Hz.   

 

 
 
Figure 1: Positions of the 59 EEG electrodes used in this 
study. C3, C4, etc. indicate the corresponding locations 
of the international 10-20 system. 
 

These subjects performed the same finger movement 
task as described above. The EEG signals were visually 
inspected for artifacts. Trials that contained artifacts 
were discarded from further analysis, which resulted 
again in datasets with up to 150 movements per subject. 
This was done to ensure that the performance 
differences between EEG and ECoG were not caused by 
artifacts in the EEG.  

 

 
 

Figure 2: Time-frequency analysis of an ECoG channel 
showing ERD activity (red) and ERS activity (blue) and 
indicating activity and idling periods.  

 
In order to compare EEG and ECoG data for BCI 

research, we defined a discrimination task between 
movement activity and idling (resting). For each trial, 
i.e. for each time frame around a movement, one idling 
and two activity periods were defined. The idling period 
(IDL) was defined as 3.5 to 4.5 sec after movement 
onset. The activity periods denoted as AP00 and AP05 
were defined as -1 to 0 sec and -0.5 and 0.5 sec relative 
to movement onset, respectively. Figure 2 shows this 
timing on top of an ERD/ERS map calculated from 
ECoG data. ERD/ERS maps are time-frequency maps 
averaged over all trials that show statistically significant 
event-related desynchronization (decrease of band-
power) and event-related synchronization (increase of 
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 bandpower) [8]. The doted vertical lines in Figure 2 
indicate the two activity periods AP00 and AP05 and 
the idling period IDL, respectively. AP00 is the pre-
movement period, which accounts for patterns 
associated with movement preparation. AP05 is the 
movement period, which contains ERD and ERS 
patterns assoicated with the actual movement. Clearly, 
the timing of the idling period was selected to avoid any 
overlapping with movement-related patterns (ERD or 
ERS). 

  

 
 
Figure 3: Schemes of the two different training 
procedures.  
 

The offline analysis consisted of 4 processing 
blocks: pre-processing which included temporal and 
spatial filtering, feature extraction, feature selection, and 
classification. Further, the analysis was devided into a 
training and a testing step. The training sets consisted of 
70% of the trials and the test set of 30% of the trials. In 
the training step, temporal filtering, the calculation of 
the spatial filters, feature extraction, the classifier set-up 
as well as feature selection was performed. In the testing 
step the spatial filter and a reduced feature set (found by 
the feature selection process) were used to produce the 
performance measure of the discrimination between 
movement- and idling patterns. Pre-processing included 
temporal and spatial filtering. The actual temporal 
filtering depended on the spatial filter applied.  

Figure 3 depicts the two different schemes for 
training the system. Scheme A, which is similar to an 
approach suggested by Yong Li et al. [9], applies three 
different temporal filters derived by a Butterworth 
approximation where phase shifts were avoided by 
forward and backward filtering. This was only done on 
the training data. The approach used on the testing data 
was causal to ensure its suitablitily for online 
applications. This filtering yielded signals containing 
mainly delta, alpha/beta, and gamma activity, for which 
individual spatial filters were calculated. While all 
signals from all three bands were used for ECoG data, 
only signals of the two lower frequency bands were 
used in the case of EEG data, because of the reduced 
bandwidth of the EEG signals.  

The spatial filters were derived from orthogonal 
source derivation (small Laplacian, LAP) [10], 

independent component analysis (ICA) [11], and 
common spatial patterns (CSP) [12].   There are a 
number of ICA algorithms available. In fact we 
investigated several popular ICA implementations 
including Sobi [13], FastICA [14], and Infomax [11]. 
Since all these ICA algorithms gave similar results and 
since Infomax has already been successfully applied to 
brain signals and also in BCI research [11], we only 
show results from Infomax in this paper. This algorithm 
was always applied in combination with principal 
component analysis (PCA), which reduced the number 
of dimensions from 59 channels to 16 components prior 
to ICA. Similarly, the first and last 4 common spatial 
patterns were selected, resulting in a reduced dimension 
of 8 per spatial filter. In the case of LAP and also for 
monopolar data (no spatial filter), the 16 channels 
showing the most prominent ERD/ERS activity 
(determined by the visual inspection of the 
corresponding ERD/ERS maps) were preselected prior 
to feature extraction. This reduction of channels and 
components respectively was done to simplify the 
feature selection process. Bandpower features from 
4 Hz and 10 Hz bands as well as simple variance 
features as suggested in [12] were extracted from 
spatially filtered or the monopolar signals yielding 
feature spaces with a cardinality between 40 and 80. 
Table 1 gives an overview of the algorithms investi-
gated, the number of preselected components/channels, 
and the number of extracted features for EEG and 
ECoG data. 
 
Table 1: Spatial filters, applied training scheme, prese-
lected components/channels, and number of extracted 
features.  
 

Extracted Features Spatial
Filter Scheme Comp./Ch. 

ECoG EEG 
None B 16 80 64 
LAP B 16 80 64 
ICA B 16 80 64 
CSP A 3x8ECoG,  2x8EEG 64 40 

 
In order to perform feature selection to reduce the 

dimensionality of the feature space down to an 
appropriate size for the training data available, the 
Sequential Floating Forward Selection (SFFS) method 
was used [15]. It is a heuristic search algorithm which 
starts with an empty feature set and subsequently tries to 
include and exclude single features from the already 
selected feature set until the performance measured by 
the fitness criterion stops increasing or a specified 
maximum number of features was selected. The 
selection criterion (fitness function) was based on the 
mean of the classification rate minus 1.5 times the 
standard deviation calculated from a 2x5 cross-
validation on the training set. The classification was 
performed by a linear classifier calculated from Fisher 
linear discriminant analysis (FDA). The maximum 
number of features to be selected by SFFS was set to 15.  



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 After the selection process, the feature set and the 
corresponding spatial filter which yielded the best 
fitness value was employed to train the classifier (again 
FDA) on the whole training set. Classifier, spatial filter 
and features were then evaluated on the previously 
unseen test set. Note that no temporal filtering was 
applied in this evaluation process. Thus, the scheme of 
the evaluation procedure is similar to Fig. 1B, however, 
without feature selection.  
 
Results  

 
As mentioned earlier, different ICA implementations 

were investigated. Additionally, all ICA methods and 
the CSP method were trained according to scheme A as 
well as scheme B (c.f. Fig. 2). However, only CSP 
showed improved performance by using scheme B. To 
conserve space and achieve a clear and consise 
representation of the relevant outcome of this 
investigation, only the results from the algorithms 
summarized in Table 1 are presented in Table 2 and in 
Figure 4. These combinations yielded results better than 
or at least similar to the other combinations we 
investigated. In any case, results were calculated for the 
discrimination between AP00 and IDL and between 
AP05 and IDL.  
 
Table 2: Classification performance.  

 
no SPFB with LAPB  

AP00 AP05 AP00 AP05 
EEG 0.63±0.08 0.67±0.12   0.65±0.09  0.76±0.11 
ECoG 0.70±0.07 0.83±0.10 - - 

with ICAB with CSPA  
AP00 AP05 AP00 AP05 

EEG 0.72±0.05 0.76±0.10   0.71±0.08  0.81±0.11 
ECoG 0.78±0.04 0.90±0.04 0.81±0.06  0.94±0.02 

 
Table 2 shows the classification performance 

averaged over all subjects with standard deviations for 
EEG and ECoG data and for all algorithms investigated. 
The algorithm is denoted by the abbreviation of the 
spatial filter and a subscript that indicates the scheme 
used for training. Results of spatial filters derived for 
the small Laplacian are not displayed, since the 
topographic distribution of the ECoG channels did not 
allow the simplified calculation for all datasets 
investigated. For those ECoG datasets where the 
topography was appropriate, results were calculated, but 
they were inferior to those obtained by ICA or CSP. 

Figure 4 depicts a graphical representation of the 
results shown in Table 2. The upper diagram shows the 
classification performance of discriminating movement-
activity (AP05) versus idling. The lower diagram 
displays the performance for the discrimination task 
pre-movement activity (AP00) versus idling. The 4 bars 
on the left hand side represent the classification 
accuracies obtained from EEG data, the 3 bars on the 
right hand side show the results found by evaluating 

ECoG data. Regardless of the recording method, 
spatially filtered data always produced improved 
performance rates compared to monopolar data. In 
general, LAP was inferior to ICA, and ICA was equal or 
inferior to CSP. Since CSP is the only method that 
makes explicit use of the class information of each data 
sample (movement or idling), the superior performance 
of CSP over the other methods is not surprising. Even 
more importantly,  the application of spatial filters 
within the suggested signal processing framework to 
EEG data yielded classification rates similar to those 
obtained from monopolar ECoG data. On the other 
hand, the same framework applied to ECoG data 
resulted in a similar performance gain.  

 

 
 

Figure 4: Comparison of classification results for 
various spatial filters applied to EEG and ECoG data.   

 
Discussion 

 
In this study, we deal with the discrimination 

between movement and idling. It is important to note 
that this is a much more difficult problem than discrimi-
nating between two spatially distinct tasks such as left 
and right hand movements. Unlike the movement events 
that elicite similar brain activity from trial to trial, the 
idling periods have the potential to be very different 
from one another thereby complicating their accurate 
detection. Therefore, our results are expectedly lower 
than results obtained by discriminating two spatially 
distinct events. For our comparison, however, it is the 
relative performance that is important.  

The results show that by using  a spatial filter which 
linearly integrates information over multiple spatially 
distributed sensors, the classification performance in 
EEG recordings could be significantly increased so that 
it was almost in the range of the results achieved for 
unpreprocessed ECoG recordings. However, applying 
the same preprocessing to ECoG data further improved 
classification and yielded very high classification rates. 
In this context it should be noted again that the artifacts 
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 were removed from our EEG data and that the locations 
of the ECoG electrodes did not consistently cover brain 
areas that are known to be most suitable for recording 
brain patterns associated with motor activity. In a 
practical BCI, the EEG would be contaminated with 
artifacts and the ECoG electrodes would be located over 
sensorimotor areas. Thus, it can be assumed that the 
differences between EEG and ECoG recordings are 
even more pronounced in a real BCI than in our 
investigations. Consequently, the results obtained 
clearly demonstrate the potential of ECoG as a 
promising method for direct brain-computer communi-
cation. 

We also want to emphasize that this was only an 
attempt at performing a comparison between EEG and 
ECoG, because for an ideal comparison, EEG and 
ECoG data recorded simultaneously from the same 
subjects should be used. However, our clinical setting 
did not allow such  recordings. The ECoG data was 
solely recorded for the purpose of epilepsy monitoring, 
which did not include simultaneous EEG recording. In 
fact, the EEG data was recorded from healthy subjects. 
That is, EEG and ECoG data were recorded from 
different subjects. Nevertheless, we think that our 
results lead to the conclusions stated, since we are 
comparing the relative increase in performance as a 
result of applying spatial filters. The point is that we can 
show that whatever gains are possible when EEG is 
spatially filtered are also possible when such filters are 
applied to ECoG. ECoG signals come direct from the 
cortical surface, whereas EEG is a record of those 
signals after being distorted and attenuated by skull and 
tissue. Clearly then, raw ECoG signals are superior to 
raw EEG signals. The relative improvement achived by 
applying spatial filters is similar in each case. Therefore, 
this gives strong evidence to support the view that 
ECoG remains superior. 

 
Conclusions 

 
Although advanced spatial filtering techniques are 

able to greatly enhance EEG signals, the results 
produced only approach the quality of raw ECoG 
signals. Since these same techniques may equally be 
applied to ECoG signals, they can be used to improve 
ECoG signals in the same way. As a result, spatially 
filtered EEG can not replace ECoG. That is, ECoG 
signals continue to have the potential to produce better 
BCI systems than EEG signals. 
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