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Abstract: Breast cancer is one of the most common 
forms of cancer among women. Currently 
mammography (X-ray examination of the breast) is 
the most efficient method for early detection. Two 
independently developed methods for detecting 
cancer-indicating masses in mammograms are 
presented in this paper. The first method is based on 
pixel intensities, the second one on texture features. 
The possible combinations of the two different 
approaches are investigated to achieve better mass 
detection rate with less false warnings. The 
composite system was tested with 523 
mammographic cases, each containing 4 images. 
 
Introduction 
 

Breast cancer is one of the most common forms of 
cancer among women. Every 12th woman suffers from 
this disease at least once in her lifetime [1]. This means 
more than 300 000 diagnosed new cases per year in 
Europe [2]. Since the cause of the disease is unknown, 
early detection is very important, for which currently 
mammography (X-ray examination of the breast) is the 
most efficient method. If breast cancer is detected early, 
the five-year survival rate exceeds 95% [1]. 

The evaluation of images taken at mammographic 
screening examinations needs a large amount of human 
resource and money. Therefore computer-aided 
diagnosis (CAD) for mammography is an active area of 
research (e.g. [3], [4], [5]). The main goals of a CAD 
system are to (i) increase the accuracy of examination 
by aiming radiologist’s attention to suspicious cases and 
to (ii) decrease the cost by filtering out normal cases. 

In a mammographic session usually two images are 
taken of both breasts. Craniocaudal (CC) is a top view, 
mediolateral (ML) is roughly a side view image of the 
breast., Radiologists typically notice suspicious-looking 
structures in one view and then verify their suspicion by 
checking the corresponding area of the other view of the 
same breast. 

The most important mammographic symptoms of 
breast cancer can be divided into two main classes: 

• Microcalcification: a group of small white 
calcium spots. 

• Mass: usually approximately round object 
brighter than its surrounding tissue. 

Not all microcalcifications and masses are 
cancerous, both can be benign, too. The two main 
classes can be divided into subclasses, for example the 
ACR (American College of Radiology) BI-RADS 

recommendation [6] defines 9 mass and 13 micro-
calcification types. Combined mass-microcalcification 
lesions are also possible. 

Figures 1-4 show some typical forms of 
microcalcifications and masses appearing in 
mammograms: 
 

 
 
Figure 1: A typcal benign 
microcalcification 
 

 
Figure 2: A typical malig-
nant microcalcification 
 

 
 
Figure 3: A typical benign 
mass 

 
Figure 4: A typical malig-
nant mass 

 
In our work we examined the mass detection 

subproblem of breast cancer detection by independently 
developing a texture-based and an intensity-based mass 
detection algorithm and then combining the two 
approaches. 
 
Intensity-Based Algorithm 
 

The first mass detection algorithm is denoted as 
intensity-based, because it works directly with pixel 
intensities of the input image and uses only simple, low-
level features (e.g. average intensity of some pixels). 
The advantage of such an algorithm is obviously 
computational efficiency, because it does not need any 
transformation or complex feature extraction step. 
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 The size of a mammographic mass can vary in a 
wide range (~5 mm – ~50 mm). The way of handling 
this size variability is an interesting question of 
computerized mass detection. The intensity based mass 
detector defines two size classes (“small” and “large”) 
and uses different methods for each. Most real-life 
mammographic masses belong to the “small” class so 
the small mass detector is the critical part of the system. 
Masses belonging to the “large” class are rare and 
usually easy to detect. Therefore the large mass detector 
is a less-frequently-used, simpler, but necessary part. 
 
Detection of Small Masses 
 

For the detection of small masses (smaller than 
20 mm in diameter) a variant of the AFUM mass 
detection algorithm [7] was applied. At each pixel 
position (x, y) the minimal intensity value at distance r1 
from location (x, y) is computed (m1), then the fraction 
of pixels at distance r2 from (x, y) that have lower 
intensity value than the m1 is measured. This fraction 
under the minimum (FUM) calculation is done over 
many scales using a range of r1 and r2 values and the 
average of those calculations yields the average FUM 
(AFUM) value. 

This AFUM algorithm variant slightly differs from 
the original one, because in the original algorithm the 
minimal intensity at distance less than or equal r1 from 
(x, y) is compared to intensity values at distance r2 from 
(x, y). In real mammograms some masses contain small 
dark dots inside. The original AFUM algorithm 
prohibits this case while the proposed variant tolerates it 
in some degree. 

If r1 = Rmin, Rmin + 1, Rmin + 2, ..., Rmax and r2 = 
r1 + D then AFUM value calculation can be written as: 
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Values Rmin, Rmax and D are fixed a priori choices 

based on the problem definition. 
A fast small mass detector can be obtained by 

running the AFUM algorithm for each non-background 
pixel of a mammographic image. The result of the 
AFUM algorithm is an output (filtered) image having 
the AFUM values of the original pixels at each position. 
The filtered image is thresholded and continuous 
regions are identified by a region-filling algorithm. 
Regions with a too high perimeter-area ratio are 
excluded from further examinations. The location of the 
maximal AFUM value is computed for each region, and 
an “energy” value is assigned for each maximum 
location based on the AFUM value of that position and 
its neighbouring pixels. A structure is accepted as a 
mass if this energy is higher than a limit. (The energy 
limit parameter can be used to adjust the sensitivity of 
the small mass detector.) Finally the locations of the 
highest N energy maxima are returned (Figure 5). 
 

 
 
Figure 5: Block diagram of the small mass detector 
 
Detection of Large Masses 
 

The a priori parameters of the AFUM algorithm 
(Rmin, Rmax and D) could not be set to deal with arbitrary 
mass size. At the resolution of 400 microns Rmin = 0, 
Rmax = 6 and D = 12 seemed to be a good choice but 
worked well only for masses smaller than 20 mm in 
diameter. For the detection of larger masses a different 
algorithm was developed: 

At each pixel position 8 lines are started from the 
center (vertically, horizontally and diagonally) and a 
mass boundary point is assessed for each direction 
(Figure 6). 
 

 
 
Figure 6: Example result of mass boundary assessment 
 

Then a “conspicuousness” value can be obtained 
from line lengths (li), average intensity along the lines 
(Brightness) and average contrast at the end of the lines 
(Contrast) with the following heuristic formula: 
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Since the detection of large masses is usually easier 

than the detection of small ones, the large mass detector 
returns only the location of the highest conspicuousness 
value if processing a whole mammogram. Obviously a 
conspicuousness limit can be applied to control the 
sensitivity of the large mass detector  (Figure 7). 
 

 
 
Figure 7: Block diagram of the large mass detector 
 
The intensity-based mass detector 
 

The combination of the previous two methods yields 
the intensity-based mass detector that can handle 
arbitrary mass size. Another advantage of the intensity-
based mass detector is that it is fast enough to process 
each pixels of a mammogram (at 400 microns 
resolution). 
 

 
 
Figure 8: Block diagram of the intensity-based mass 
detector 
 

The combination of the two parts was implemented 
in the following way (Figure 8): 

i. Run the large mass detector for the input image. 
ii. If the conspicuousness value of the returned 

location is greater than a given value, stop 
processing and return this location as the result 
of the intensity-based mass detector. 

iii. If the conspicuousness value of the returned 
location is smaller than a given value, run the 
small mass detector for the input image. 

iv. Return the small mass detector’s output 
locations in addition to the large mass detector’s 
output location as the result of the intensity-
based mass detector. 

 
Texture-Based Algorithm 
 
The second mass detection algorithm is denoted as 
texture-based, because it works with texture features 
extracted from pixel intensities around a pixel’s 
neighbourhood in the input image. This algorithm is 
computationally more expensive than the intensity-
based algorithm, because of the derivation of texture 
features. These are high level features, such as texture 
variation or coarseness. This segmentation method gives 
information about the location of the most conspicuous 
mass tissues in the breast and some information of the 
shape as well.This texture-based localization of masses 
in the mammograms consists of two main parts: 
“coarse” and “fine” segmentation. 
 
“Coarse” segmentation 
 
This step calculates various texture parameters in a 
particular sample window to create the feature vector. 
This window (in which the texture features are 
calculated) is sliding through the entire breast image. 
The feature vector contains 17 texture parameters. Four 
of them are based on the histogram [8], four of them on 
the co-occurrence matrix [8], four of them on the gray 
level run length [9] and the last five on the gray level 
differences histogram [9] (Table 1). 
 
Table 1: Used texture features and their references. 
 

Feature Group Feature Reference 

Histogram features 

Mean 
Variance 

Skewness 
Kurtosis 

[8] 

Co-occurence 
matrix features 

Varinace 
Contrast 

Homogenity 
Correlation 

[8] 

Gray level run 
length features 

Short-run emphasis 
Long-run emphasis 

Gary-level distribution 
Run-length 
distribution 

[9] 

Gray level 
differences 

features 

Mean 
Variance 
Contrast 

Skewness 
Kurtosis 

[9] 
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 The feature vector is classified by a set of decision 
trees [10]. Each one of the individual decision tree 
classifiers is generated from a training image. The set of 
the decision trees are generated from a set of training 
images using a form of the bagging [10] algorithm 
(Figure 9). The difference to the original bagging 
algorithm is that here each traning image is used only 
once to grow one decision tree. These training images – 
which are extracted from mammograms previously 
evaluated by physicians – contain a mass and some 
surrounding background tissue. From each training 
image the corresponding decision tree is generated 
using the CART (Classification and Regression Trees) 
[11] algorithm. The feature vectors – extracted at 
sample window positions – are used as training data for 
the decision trees. The tree growing process chooses the 
optimal test based on the Gini diversity index. Tests are 
made on the feature vector parameters. Each tree node 
uses 1 of 1 test (only one parameter is tested in a node). 
The optimal tree size is estimated using 10-fold cross-
validation, minimal cost-complexity pruning and 1-SE 
rule [11] to prevent overfitting. Different trees – that are 
generated from different training images – will choose 
different texture features from the set to classify the 
image regions according to their training sample. 

After the training phase the new mammogram is 
segmented using all the decision trees (Figure 9). The 
output is a voteboard where each image segment can 
have a vote value between zero and the number of the 
classifying trees (each tree votes ‘1’ if it classifies the 
actual image segment as part of a lesion, ‘0’ otherwise). 
The higher the vote number the greater the probability 
that the actual image region is a mass. Adaptive 
thresholding is applied to this voteboard to find the most 
suspicious regions. This step will binarize the 
voteboard, marking the locations where the vote value is 
greater than its surrounding's. This segmentation 
method gives a rough representation of the shape and 
localization of the most conspicuous mass tissues in the 
breast. 

 
 
Figure 9: The schematic of the “coarse” segmentation 
classifier system. 
 
“Fine” segmentation 
 

This forthcoming algorithm uses a Markov random 
field [12] [13] to improve the preliminary result 
provided by the “coarse” segmentation. This method 
models the segmented image as a Markov Random 
Field, where pixel class probabilities are defined by 
their neighbors' classes and intensities in the original 
image. The model chosen for the segmented image is 
the MultiLevel Logistic Field (MLL) [12]. It's 
advantage is simplicity, and the power to encode spatial 
patterns. First, using this model, at every spatial location 
s in the segmented image a potential value (V) is 
defined. This value is lower when the pixels in the 
neigborhood of s have the same class label as the pixel 
at s. Next, in this model the original image is derived 
from the segmented image with additive Gaussian noise 
[15]. As a result each pixel is more likely to have a class 
of its neighbors having intensities close to itself. The 
optimal segmentation is defined using the MAP 
(Maximum A Posteriori) principle [12]. Pixel class 
probabilities defined by MLL (MultiLevel Logistic 
Field): 
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where ys is the pixel intensity at location s, xs is the class 
of the pixel at location s, ms(k) is the average intensity 
of pixels around location s in a particular window (ws) 
which have class label k. 

An image with 1024x1024 pixels and 2 pixel classes 
has 10486762  possible segmentation results. Finding the 
optimal one is prohibitively expensive in computation 
time. For this reason we use the ICM (Iterated 
Conditional Modes) algorithm [12] [13] to approximate 
the MAP (Maximum A Posteriori) segmentation of the 
image in several steps. Each step uses the result of the 
previous step as the input segmentation. In every step 
each pixel class is replaced by the most probable one 
defined by Eq. (4). This step creates a mask that 
contains the mass candidates with better size and shape 
representation (Figure 10). 
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Figure 10: Original image, “voteboard”, “coarse” 
segmentation, “fine” segmentation. 
 
Combination Possibilities of the methods 
 

Each of the methods presented in this paper creates 
an output mask, covering the suspected mass locations. 
These locations are also marked with a conspicousness 
number. The combined result of the two algorithms is a 
mask where certain patches are kept from each 
algorithm. 

Several combination possibilities were investigated. 
131 images with known masses in each were selected 
for combination tests. The mass candidates that were 
marked by both algorithms are marked in the output 
image as well. Unfortunately if only those common 
masses are kept, the true positive ratio of the combined 
algorithm barely reaches 50% (Fig. 11).  

 

 
 
Figure 11a: Surface plot of the combined true positive 
ratio on test data set. 
 
When a certain number of masses are kept – according 
to their conspicousness number –, plus the common 
ones, the true positive ratio increases (Fig. 11). In the 
optimal combination 6 mass candidates from the 
intensity based algorithm and 2 from the texture based 
algorithm are selected. Using this combination true 
positive ratio increases to 85% on the test data set. The 
search for the optimal combination was done on image 
level. As a result here true positive ratio is calculated for 

images. Later for validation purposes case level was 
used instead (see results and conclusion) as 
recommended by physicians. (A case contain 4 images 
of the two breasts.) 
 

 
 
Figure 11b: Contour plot of the combined true positive 
ratio on test data set. 
 

Further increasing the true positive ratio is 
prohibitively expensive in the means of false positive 
markers / image (Fig. 12). 
 

 
 
Figure 12a: Surface plot of the combined algorithm's 
false positive markers / image on test data set. 
 

 
 
Figure 12b: Contour plot of the combined algorithm's 
false positive markers / image on test data set. 
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 Results and conclusion 
 

The combined algorithm was evaluated on 523 
mammographic cases (523 x 4 = 2092 images) of the 
DDSM database [4]. 349 cases contained malignant, 8 
cases benign masses and 166 cases contained no 
masses. A malignant case was counted as recognized if 
one of the marker centers returned by the combined 
mass detector was inside the radiologist-drawn 
boundary of the malignant mass in any image of the 
case. A marker was counted as a false positive if its 
center was not inside the radiologist-drawn boundary of 
any (malignant or benign) mass. (See Table 2) 
 
Table 2: Results, MCRR =  Malignant case recognition 
rate, FPM / image = False positive markers / image 
 

 MCRR FPM / 
image 

Relative intensity based 
algorithm (setting 1) 92.8% 3.6 

Relative intensity based 
algorithm (setting 2) 93.9% 4.5 

Texture-based algorithm 70.0% 3.0 
Combined algorithm 95.1% 4.3 

 
According to an exhaustive study [14], the chance of 

detection of a tumor by a radiologist ranges from 98% 
to 48%, according to the breast density. In our test we 
used cases from all density categories at roughly equal 
number. Considering this, our results are promising. 

Results show that the intensity based algorithm is 
more effective in mass localization, although there are a 
minor number of cases where texture-based information 
is required to identify the mass. 

 
Acknowledgments 

 
This work is sponsored by Research and 

Development Secretariat of the Hungarian Ministry of 
Education under contract IKTA 102/2001 and by the 
Hungarian Fund for Scientific Research (OTKA) under 
contract T046771. 
 
References 
 
[1] HIGHNAM, R. and BRADY, M. (1999, Eds): 

‘Mammographic Image Analysis’, (Kluwer 
Academic Publishers) 

[2] FERLAY, J., BRAY, F., PISANI, P. and PARKIN, D.M. 
(2001): GLOBOCAN 2000: ‘Cancer Incidence, 
Mortality and Prevalence Worldwide, Version 
1.0’, (IARC Cancer Base No. 5., Lyon, IARC 
Press) 

[3] LEE, S., CHUNG, P., CHANG, C., LO, C., LEE, T., 
HSU, G. and YANG, C. (2003): ‘Classification of 

Clustered Microcalcifications Using a Shape 
Cognitron Neural Network’, Neural Networks, 16, 
pp. 121-132. 

[4] CAMPANINI, R., DONGIOVANNI, D., IAMPIERI, E., 
LANCONELLI, N., MASOTTI, M., PALERMO, G., 
RICCARDI, A. and ROFFILLI, M. (2004): ‘A novel 
featureless approach to mass detection in digital 
mammograms based on Support Vector 
Machines’, Physics in Medicine and Biology, 49, 
pp. 961-976 

[5] ALTRICHTER, M., LUDÁNYI, Z., HORVÁTH, G. 
(2005): ‘Joint Analysis of Multiple 
Mammographic Views in CAD Systems for Breast 
Cancer Detection’, Accepted at SCIA 2005 – 14th 
Scandinavian Conference on Image Analysis, 
Joensuu, Finland, 2005 

[6] AMERICAN COLLEGE OF RADIOLOGY (1998): 
‘Illustrated Breast Imaging Reporting and Data 
System (BI-RADS)’, (3rd edition, American 
College of Radiology, Reston, VA) 

[7] HEATH, M.D., BOWYER, K.W. (2000): ‘Mass 
Detection by Relative Image Intensity’, Proc. of 
IWDM 2000 – Fifth International Workshop on 
Digital Mammography, Toronto, Canada, 2000, 
pp. 219-255 

[8] J. IIVARINEN (1998), ‘Texture Segmentation and 
Shape Classification with Histogram Techniques 
and Self-Organizing Maps’, Acta Polytechnica 
Scandinavica, No 95, TTA, Helsinki 

[9]  I. PITAS (2000), ‘Digital Image Processing and 
Algorithms and Applications’, (John Wiley & 
Sons, New York) 

[10] RICHARD O. DUDA, PETER E. HART, DAVID G. 
STORK (2001), ‘Pattern Classification 2nd ed’., 
(John Wiley and Sons, New York) 

[11] L. BREIMAN, J. H. FRIEDMAN, R. A. OLSHEN, C. J. 
STONE (1984), ‘Classification And Regression 
Trees’, (Chapman & Hall) 

[12] H. D. LI, M. KALLERGHI, L. P. CLARKE, V. K. JAIN 
(1995), ‘Markov Random Field for Tumor 
Detection in Digital Mammography’, IEEE 
Transactions on Medical Imaging, vol. 14, no. 3, 
pp. 565-576, September 1995. 

[13] S. Z. LI (1995), ‘Markov Random Field Modeling 
in Computer Vision’, (SpringerVerlag, New York 
) 

[14] THOMAS M. KOLB, MD, JACOB LICHY, MD AND 
JEFFREY H. NEWHOUSE, MD, ‘Comparison of the 
Performance of Screening Mammography, 
Physical Examination, and Breast US and 
Evaluation of Factors that Influence Them: An 
Analysis of 27,825 Patient Evaluations’, URL: 
http://radiology.rsnajnls.org/cgi/content/full/225/1/
165?gca=225%2F1%2F165&sendit=Get+All+Che
cked+Abstract%28s%29& 

 


