
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 A JAVA-BASED MULTIPLATFORM HIGH PERFORMANCE 2D AND 3D
VISUALIZATION ENGINE FOR MEDICAL IMAGE DATA SETS

T. Arola*, M. Hannula*, J. Hyttinen*, P. Dastidar**, S. Soimakallio**, J. Malmivuo*

* Ragnar Granit Institute, Tampere University of Technology, Tampere, Finland

** Department of Diagnostic Radiology, Tampere University Hospital, Tampere, Finland

tuukka.arola@tut.fi

Abstract: We have developed a high performance 2-
and 3-dimensional visualization engine for medical
image data sets. The software is written entirely in
Java and is fully platform independent. Hardware
accelerated 3-dimensional modes are implemented
via Java3D that allows to use OpenGL or Direct3D
as the underlying hardware accelerated application
programming interface (API). The visualization
engine is part of a modeling framework. As an
example of the capabilities of the engine two
different data sets have been visualized.

Introduction

Three dimensional modeling and visualization is

becoming even more important as the computerized
radiology equipment is developed further. Now it is
possible to obtain 3D data set from computed
tomography (CT) and magnetic resonance imaging
(MR) devices in reasonable times. Most of time
researchers are interested to see the analysis results being
displayed on the computer screen. As user interaction
such as segmentation is increasing, visualization
becomes a critical feature in medical imaging
exploration and analysis.

Thus there is a general interest and demand on high
performance and platform independent visualization. In
addition there has been a growing demand for a high
performance 3D visualization engine for modeling
purposes in our institute. A decent visualization engine
could benefit researchers but also students in
understanding bioelectromagnetic phenomena and
human anatomy. Previously toolkits for visualization
have been developed [2]. Also other toolkits such as
VTK [3] have been tested. A major drawback using
these toolkits has been the need for compiled, native
binaries, which restrict their applicability on different
kinds of platforms.

Java is becoming a major language in software
business. A major advantage of Java compared to e.g.
C++ is its well designed object oriented programming
model as well as the fact that compiled Java-binaries
can be run in various environments. Desktop Java has
developed huge steps under a couple of last years and is
becoming an even more suitable language for various
other tasks, such as visualization and user interface
construction.

Gaming industry is a major driving force in
computer technology and thus 3D features have been
implemented also in Java. In order to keep to platform
independency, an intermediate 3D layer was
implemented in Java to provide hardware accelerated
3D graphics. This layer acts as a mediator between Java
objects and platform specific implementation layer.
Currently Java 3D (version 1.3.2) supports OpenGL on
all platforms and also Direct3D on Microsoft Windows
operating systems [1].

Development of a software framework for
simulation and visualization of Finite Difference (FD)
models was started in 2003. Since then, the software has
evolved and now is a full featured framework for
modeling including various modules. It includes a full
2D and 3D visualization engine among other features
such as segmentation, model creation and simulation.
While still under development, the results of the
graphics engine have been promising and our engine has
demonstrated its usability in modeling and segmentation
as well as in volumetric analysis. Additionally the
framework is tailored to be used in education in our
institute as a part of a web based learning environment
as an applet.

Material and Methods

Our primary goal has been a powerful imaging tool

especially for medical image data sets and for modeling
purposes. It should be usable for both researchers and
students alike. Thus, the engine as well as the modeling
framework was needed to be usable in various
environments. Java was chosen for implementation
because of group’s expertise in commercial Java
software, its true cross-platform capability and
multiplatform, hardware accelerated Java3D API. The
newest versions, Java 1.5.0 and Java3D 1.3.2, have been
selected to gain best performance possible.
The emphasis in the design of the graphics engine has
been on extensibility. As seen in Figure 1, the 3D
engine has interfaces for model extraction, triangulation,
mesh reduction and mesh smoothing. These
implementations can be changed and new can be
developed. Currently there is only one implementation
for each.
The graphics engine has both 2D and 3D modes. The
engine works in full 32 bit color mode to provide

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 “unlimited” mixture of colors. The engine supports
multimodal imaging and thus the color map for each
modality or segmentation layer can be selected from
pre-defined color maps or a new color map can be
created.

Our geographical proximity with Tampere
University Hospital (Tampere, Finland) provides us an
excellent opportunity to test and develop the software
utilizing clinical data from CT, MR and US devices.
Thus, to demonstrate the capabilities of our engine we
have chosen two different data sets.
• A CT image stack of a patient with abdominal

aortic aneurysm (AAA) with 48 slices in 512x512
resolution that was segmented [4].

• A MR stack of a female head with full
segmentation with 87 slices in 256x256 resolution.

Color map

Model Extractor

Surfaced 3D
Render context 1

1..n
Layer

Triangulator

1

1..n

1..n

1

Mesh reducer

Mesh smoother 1..n

1..n

1

1

2D Render context
1

2D Visualizer

1

1

Modality

1

1..n

1

1

Volumetric 3D
Render context 1

Volume
visualizer 1 1

Figure 1: A class diagram of visualization contexts
(modes) and their essential interfaces of the graphics
engine.

2D mode provides a flexible way of looking data in

multiple modalities. The framework has tools for
segmentation which require powerful 2D features from
the graphics engine such as layering with adjustable
transparencies.

2D mode can show cross-cut slices of any data set in
axial directions. Imaging and model modalities are
layered one on the other. User can adjust transparency
and visibility of each layer separately at any time and
change the color palette of each layer independently.
Generally layering does not distinguish between
different types of data; they can render data of any type:
pure pixel data or other graphics data such as vector
fields.

Performance of the 2D renderer is easily affected by
using multiple modalities of data. Implementation of
graphics routines and layering has been optimized to
cache and flatten the modality and layer structures. For
example tree structures of different segmentation layers
are flattened before render phase. That ensures only one
rendering pass for all segmentation layers on average.
Flattening is done again only if the data in layer tree has

changed. This ensures fluent operation even when
layering multiple segmentations on top of original data.

The engine has two separate modes for 3D

visualization. Modes are:
• Hardware accelerated surface rendering mode

based on surface triangulation of known tissues
• Volumetric rendering implemented as Ray Casting

Surfacing mode is supported via Java3D. Java3D
translates the user (surface) model to OpenGL or
Direct3D models and forwards the control to the
hardware API in question. In the 3D view the engine is
capable of point, triangle and surfaced rendering with
gouraud shading and transparency settings in real time.
The model can be rotated, zoomed and different tissues
can be toggled on and off. Transparency of different
tissue types can be adjusted individually.

Triangulation is currently implemented with
Marching Cubes (MC) algorithm [5]. The algorithm has
been used previously on medical data visualization. MC
is a contouring algorithm and is produced by rolling a
2x2x2 window over the 3D data. Surface elements are
created according to the elements in the window.
Strengths of MC are speed and low memory
consumption and the fact that it is really straightforward
to implement. However, MC has a tendency of creating
excessive amounts of triangles.

Although 3D graphics cards can nowadays render
millions of triangles in decent frame rates, reduction and
simplification of the 3D mesh is needed. Currently, the
engine does offer a simple mesh reduction but a more
versatile version will be added in the near future. Also
mesh smoothing can be applied to make the generated
surfaces appear smoother. Currently we have
implemented a simple averaging smoother.

The second 3D mode is volumetric visualization
implemented as Ray Casting (RC). RC has been used
for a long time in computer graphics. It does not need
triangle surfaces constructed but – as the name says –
casts rays from user viewport to the volume. Each ray is
traced and the hit point in the scene determines the color
value and depth of pixel. The method is slow and
various ways to optimize it has been introduced [6]. We
have used Oct Tree space partition algorithm to find
empty areas in the volume. With the help of space
partitioning the RC renderer can rapidly decide if a
subvolume can be neglected. Also, an adaptive
termination method is used to determine the termination
point for the ray. Both of these methods are powerful
and easily implemented and offer noticeable
performance advantages.

Generally, Ray Casting algorithms perform poorly
compared to surfacing methods but provide also a more
realistic render. Additionally, they can be further
extended to include reflections, refractions and
dispersion of the rays to produce photorealistic images.

Results

The software produced is capable of high performance
visualization both in 2D and in hardware accelerated

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 3D. The engine itself is not confined to medical image
data and can also be used for other visualization
purposes.

Figure 2 shows an axial 2D render of the human
head with segmentation of gray matter.

Figure 2: 2D mode view of human brain with
segmented gray matter. Transparency (60%) has been
applied to the segmentation. Also other modalities can
be similarly layered on top each others. The lines show
the position of the other cutting planes.

As for the surface 3D mode, the pure performance of

the 3D engine is good if compared qualitatively to
commercial software such as MATLAB, SEMCAD and
FEMLAB. Over 2 million gouraud shaded triangles can
be visualized with ease on a standard office desktop
computer with 1GB of memory and average 3D
graphics card (ATI 9200 series) with frame rates around
5-10. Table 1 below describes some surfacing times for
model shown in Figure 3. Generally, the performance of
the surfaced 3D mode is determined by the graphics
accelerator. Variables having effect on performance are
model triangle count, shading and special effects such
as transparency.

Table 1: An example of triangle counts, surfacing times,
memory consumption and surfaced model frame rates
for various tissues in segmented head model with
surface smoothing but no mesh simplification (Intel
Pentium 4, 2.8GHz, 1GB RAM, ATI 9200 series
graphics card, 1024x768 resolution)

 Skull White matter Eyes
Triangle count 493504 569640 8412
Surfacing time
(sec)

7.2 9.4 3.2

Memory
consumption (MB)

68 97 22

Surfaced model
frame rate

13 10 38

Figure 3: A segmented human brain, skull and the eyes
in 3D visualization mode. Table 1 describes the triangle
counts, surfacing times, memory consumption and
surfaced model frame rates for this model.

In our abdominal aortic aneurysm example, the

segmentation produced with the framework was directly
forwarded to the 3D engine that creates a point-based
non-shaded view of data with gouraud shaded aneurysm
region as seen in Figure 4. The stent located inside the
aneurysm can also be seen in surfaced mode in Figure 5.

Figure 4: CT image data with a segmented abdominal
aortic aneurysm in surfaced 3D visualization mode.
Imaging device data and segmentations produced in the
framework can be visualized easily.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

Figure 5: Abdominal aortic aneurysm and the stent
implanted in surfaced 3D mode. Visualization is built
from CT data set. The structure of the stent is clearly
visible.

Discussion

Results provided show that our engine performs well

and is suitable for a range of medical image sets. Java
has long been though to be too slow for scientific
purposes, but newer Java versions 1.4 and 5.0 have been
major steps forward in desktop features and especially
performance. There are already dozens of commercial
software using Java and Java3D including games and
scientific software.

A qualitative performance comparison is missing,
but as can be observed from Table 1, the performance of
the 3D renderer is good. Memory consumption can be
optimized further but currently 1GB of memory is
enough for complete surfacing a complex 256x256x128
data set.

We have used Marching Cubes algorithm for surface
triangulation. There are also other methods for creating
surfaces which are not currently supported by our
engine. Such methods include Delaunay-based and
contour methods. While being harder to implement,
these methods could provide smoother surfaces and
inherently lower triangle counts. However, it must not
be forgotten that surface triangulating volumes produces
an approximation of the surface and due to the nature of
voxel data, the resulting visualization cannot be totally
smooth without softening.

Java has support for hardware accelerated 2D
graphics, but currently it is not supported by the engine.
However, performance of the 2D renderer is adequate
and it can render up to 15 frames per second in
1024x768 resolution with three layers of layered data.
One could argue whether hardware acceleration has any
impact on performance in this case. After all, rendering
itself is done in system memory and there is no need for
a double buffer in accelerated memory due to full buffer
updates to the screen.

The engine is by no means complete. There are
various aspects planned to be improved in the future.
Overall performance of the 3D visualization modes
need further optimization, especially volumetric model
renderer needs attention. Also better reduction of the
generated triangle mesh is needed to surface even more

complex models. More smoothing operators will be
added to provide nicer, smoother surfaces. This can also
be achieved by implementing a contour-based surfacing
which is under development.

Due to the nature of Java and specific
implementation details, the engine can also be used in
an applet in web browser through a network. 2D mode
has full features in applet mode, but 3D mode could
have some limitations. This is due to the memory
restrictions web browsers have for applets. The memory
consumption of the 3D engine is linear to the model
size. The applet mode makes it possible for students to
familiarize themselves with modeling concepts and
human anatomy without having to download and install
the software framework and models needed.

Conclusions

A high performance, multiplatform, Java-based

visualization engine for medical image data sets and
segmented models has been introduced. We have
provided examples to demonstrate the features of our
engine. The engine has been utilized in research and
teaching purposes in our institute. Our engine currently
provides a basic package of utilities for full 2D and 3D
medical data visualization and is part of a framework
for image segmentation and bioelectric field
simulations.

References

[1] Java3D Home page, Internet site address:

https://java3d.dev.java.net/

[2] HEINONEN T., DASTIDAR P., FREY H., ESKOLA H.
‘Applications of MR image segmentation’, Int. J.
Bioelectromag, Num 1. Vol 1. 1999. Internet:
http://www.ijbem.org/volume1/number1/html/toc.h
tm

[3] The Visualization Toolkit home page, Internet

adderss:
http://public.kitware.com/VTK/

[4] HANNULA M., AROLA T., HYTTINEN J., NARRA N.,

DASTIDAR P., PIMENOFF G.,
SOIMAKALLIO S., MALMIVUO J.: ‘Use of
segmentation and volumetric estimation in the
treatment of abdominal aortic aneurysms using
stents ’, Proc. of 3 European Medical &
Biomedical Engineering Conf., Praque, Czech
Republ., 2005, submitted

rd

[5] LORENSEN W., CLINE H: ‘Marching cubes: A high

resolution 3D surface construction algorithm’, Proc.
of the 14th annual conf. on Computer graphics and
interactive techniques, 1987. p.163-169.

[6] LEVOY M., CLINE H: ‘Efficient ray tracing of

volume data’, ACM Transactions on Graphics,
1990

	Abstract: We have developed a high performance 2- and 3-dime
	Introduction
	Material and Methods
	Results
	Discussion
	Conclusions
	References

