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Abstr act: In this paper , we introduce a whip 
dynamics to build a model of the bow arm movement 
in playing str ing instruments. Recently the physics of 
the whip motion was studied and its equation of 
motion was obtained by McMillen and Gor iely. We 
give detailed consideration of the bow arm 
movement based on the equation. In par ticular  we 
take up the problem of the speed control at bow 
dir ection change (“bow change” in shor t). Bow 
change is one of the hardest tasks in the bow 
movement, and we need to control the bow change 
speed depending on the music phrases. According to 
the whip equation of motion, the propagation speed 
of the maximum speed point is propor tional to the 
square root of the whip’s stiffness. In case of the bow 
change, we can adjust the bow change speed by 
adjusting the impedance of the body trunk which 
cor responds to the main par t of the whip. We 
investigate the validity of the whip model by 
measur ing the deviation of the center  of the gravity 
and muscles activation patterns dur ing a simple 
bowing task.  
 
Introduction 
 

Several studies have been made on the bow arm 
movement in playing string instruments [1], [2], [3], [4]. 
Since the bow arm movement is a very hard task in 
playing string instruments, it is expected that such 
studies would significantly help not only beginners but 
also professional players to improve their skills, to 
avoid fatigue from painful exercise and/or to get rid of 
performance slump.  

Most of the previous studies attempt to identify the 
differences between novices and professionals by 
comparing their biophysical data during performance. 
Although these approaches provide possibly useful 
information to elucidate tacit knowledge of bowing skill, 
they are not always successful in extracting general laws 
of bow arm movement. This is because there are  large 
variations amongst players on how to perform given 
music pieces. We refer to this difficulty as the problem 
of individual differences. There are two possible 
approaches to get around the problem: 1) to increase the 
number of the subjects to guarantee the validity of the 
induced laws by statistical test, or 2) to build a 
dynamical model of bow arm movement, and verify the 
experimental results by referring the model. In this 
paper, we adopt the second approach.   

In our previous studies, we proposed several 
dynamical models of bow arm movements, e.g., a 
pendulum model, an inertia model and a stretch 
movement model. We then provided a physical 
interpretation of some aspects of bow arm movements 
[5], [6]. In the case of a pendulum model, for example, 
we regard the repetitive bow movement as a pendulum 
motion, and the model provides a numerical target value 
of the pendulum length to achieve the required bow 
movement cycle.  More specifically, the model says that 
when the cycle is two seconds, then the pendulum 
length is around 1m. On the other hand, when we reduce 
the cycle by half, we then need to shorten the pendulum 
length to 1/4, namely 0.25m. This relationship continues 
further; if the cycle becomes 0.5 second, then the 
required pendulum length is around 0.06m. The last 
pendulum length is achieved by making the wrist as the 
supporting point of the pendulum, which in turn is 
realized by increasing the impedances of both the upper 
arm and the forearm.  We actually conducted an 
experiment, the task of which included repeated bowing 
with gradually shortening the cycle of the bow change. 
We observed the predicted impedance adjustment 
according to the cycle of the bow change. 

In the case of the stretch model, we wanted to verify 
the hypothesis that the human beings generate biggest 
power when they pull toward the center of the body.  To 
do so we measured the relationship of the power and the 
angle between the bow direction and the frontal plane. 
We observed around 30% power reduction with the bow 
pulled parallel to the frontal plane, compared to the 
direction toward the center of the body.  

In this paper, we introduce a whip model as our 
fourth physical model. Several researchers have 
reported the use of a whip model, in order to explain 
such movements as javelin throwing and badminton 
backhand stroke, in addtion to our modeling the bowing 
arm movement in playing string instruments. The 
importance of the whip motion was also indicated for 
kendo, the Japanese art of fencing.  However they only 
referred whip-like motion as a phase shift phenomenon 
of maximum speed occurrence from proximal extremity 
(e.g., the hip) to the distal end (e.g., hand or finger) 
without detailed whip dynamics analysis.  

Recently the physics of the whip motion was studied 
and its equation of motion was obtained by McMillen 
and Goriely [7]. In this paper, we introduce the whip’s 
equation of motion and give detailed consideration of the 
bow arm movement based on the equation. In particular 
we take up the problem of speed control at bow direction 
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 change (“bow change” in short).  Bow change is one of 
the hardest tasks in bow movement, and we need to 
control the bow change speed according to the music 
phrases we play: rapid notes require fast bow change, 
and slow notes require slow bow change.  The problem 
here is how to control such bow change speed. The whip 
motion model provides the answer. According to the 
whip equation of motion, the propagation speed of the 
maximum speed point is proportional to the square root 
of the whip’s stiffness. In case of the bow change, we 
can adjust the bow change speed by adjusting the 
impedance of the body trunk which corresponds to the 
main part of the whip. 
 
Mater ials and Methods 

 
In this section, we introduce the whip’s equation of 

motion derived by McMillen and Goriely [7].  Whip 
motion can be simply viewed as the movement of a 
maximum speed point of the whip, under consideration 
of the properties of the physical whip object. Here we 
consider the whip motion in a two dimensional x–y 
plane as shown in Figure 1. 
    

     
 

Figure 1:  Whip Coordinate System 
 
Let )),(),,((),( tsytsxts {r  be the centerline of 

the whip rod in the x–y plane, where s is the arc-length 
and t is time, and M  be an angle between the tangent of 
the whip at (x,y) and the x axis as shown in Figure 1. 
Then the unit tangent vector t is given by   
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Let ρ be the density of the whip, A be the cross section 
of the whip at (x,y), (F,G) be force vector at (x,y), E be 
Young’s modulus and I be geometric moment of inertia 
at (x,y). Then the following equations of motion hold: 
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where )( cx denotes differentiation with respect to the 
arc-length s, and )( &x  differentiation with respect to 
time t. Then we apply the following normalizing 
transformations: 
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where R(s) is the radius of the whip at s, R0 is the radius 
of the whip at a given reference point as shown in 
Figure 1 and G  is the ratio of the cross-section area at s 
to the one at the reference point.  It is known that c is 
the speed of the sound in the whip.  Then we obtain the 
following equations (after the transformation, we drop ~ 
symbol for readability): 
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By setting cts � [  and converting the 
differentiations of both s and t to the differentiation of 
[ , we obtain the following equations:  
                                                               

                                                                

                                                                 

Now we consider a whip of infinite length which is 
horizontal at f�  and the tension at f�  is α.  Then, 
from (1), (8) , (9) and (10), the following equations are 
obtained: 
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Figure 2 is a graph of the locus of (x,y) defined by 

(11) and (12) computed by  Mathematica. This graph 
shows that there is a loop in the middle of the whip 
which propagates fast from left to right as a wave.  Note 
that both of the x and y axises of the figure represent  
the normalized coordinate of the whip plane.  
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Figure 2:  The locus of a whip rod defined by equations 
(11) and (12). 
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 Equation (11) captures the behavior of the whip 
along x axis.  By differentiating (11) twice, we obtain 
the condition where the maximum speed of the whip 
propagates by a function of time: cts  . This equation 
states that the maximum speed point moves proportional 
to a constant c, the velocity of sound in the whip.  

Furthermore, the speed of the sound U
Ec   is 

proportional to the square root of the Young’s modulus 
E. That is, if you make the stiffness of the whip four 
times bigger, then the whip’s propagation speed 
increases twice.  

If we apply the whip model to the bow arm 
movement it is then possible to adjust the propagation 
speed of the maximum speed point by adjusting the 
stiffness of the body trunk.  The problem is how to 
adjust the stiffness of the body trunk.  It is well known 
that human beings adjust their impedance while 
performing various skill-based tasks.  The impedance 
adjustment is directly related to a stiffness adjustment, 
and it is achieved by appropriately activating both of the 
agonist and the antagonist simultaneously.  In our case, 
the impedance of the backbone is to be adjusted by 
activating both of the right and the left erector muscles 
of the spine.  You can easily imagine this action:  if you 
release the tension of the backbone, then you can swing 
your body easily and slowly, which corresponds to the 
low impedance situation.  On the other hand, if you 
increase the tension of the backbone, then the swing 
width decreases and the move becomes faster, which 
corresponds to the high impedance situation.   

It is very important to control the speed of body 
movement, and especially the speed of the bow change, 
by adjusting the impedance of the body trunk.  The 
controllability makes it possible to select the right way 
to perform any given task.  
 
Results 
 

We conducted two experiments to investigate the 
bowing mechanisms. In the first experiment, we 
measured the locus of the center of the gravity to find 
the relationship between the note length and the 
deviation of the center of the gravity. In the second 
experiment, we measured the erectromyograms of 
various muscles to find the relationship between music 
note patterns and  back muscles activities.  

Figure 3 shows the performance task of the first  
experiment.  In our case, we observed that the loci of 
the center of gravity during bow change tasks vary 
with note lengths: that is, whole notes, half notes, 
quarter notes, eighth notes and 16th notes.  We selected 
this task because performing the bow changes for 
different note lengths require different timing for 
preparing the movements.   

The equipment we used in our experiment is a  force 
plate by Kistler, 9286AA. We measured the loci of the 
center of the gravity during performing the above task.  

  
 

 
 

 
 
Figure 3: The first task for investigating the effects of 
the notes’ length in preparing the bow change. 

 
The results of the experiment are shown in Figure 4 

where the horizontal axis is time (second) and the 
vertical axis is the deviation of the player's center of 
gravity projected to a frontal plane.  This figure shows 
center of gravity loci of four different subtasks 
corresponding half notes, quarter notes, eighth notes and 
the 16th notes altogether by folding the entire graph at 
those points where each new subtask starts.  Since the 
projection of the center of gravity to a frontal plane 
reflects the body swing along frontal plane, it is 
interpreted as showing pre-shaping for the bow change. 
In this figure, we observe two important facts. First, the 
amplitudes of the center of the gravity deviation are 
bigger when the note length is longer. This means that 
the player swings wider when playing the longer notes. 
This tendency is natural, because the player can produce 
the longer notes more softly. On the other hand, when 
the player plays shorter notes, he or she tends to make 
sharper sound by restricting their body movement 
smaller. There is one exception: the case of playing 16th 
notes (purple thin line in Figure 4).  The reason why 
they are played with more amplitude than the eighth 
notes is due to the difficulty of the task. 
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Figure 4: The deviation of the center of gravity in 
performing whole notes, half notes, quarter notes, eighth 
notes and 16th notes. 
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Secondly, the lag time for preparing the bow change 
becomes shorter when the note length is shorter.  This 
fact gives a support for the whip model which claims 
players adjust impedance of back muscles in order to 
control the propagation speed of the phase shift 
depending on the music notes.  

The task of the second experiment is the same as 
that of the first one. In this case, we measured both the 
right and the left erector muscle of spine during the 
performance. Surface EMG signals were measured with 
disposable Ag-Cl bipolar surface electrodes (EL503, 
BIOPAC Systems, Inc. CA, USA) using a telemetry 
system (Syna Act MT11, NEC Medical Systems, Tokyo, 
Japan), whose time constant value was set to 0.01, 
filtered with a Hamming windowed 6Hz FIR low pass 
filter. After rectifying and filtering we normalized the 
EMG data by the maximum voluntary contraction 
(MVC), which was measured at the same time. Figure 5 
shows activity patterns of these two muscles during 
performing a sequence of half notes and Figure 6 those 
for 16th notes. The vertical axis is activity ratio of each 
muscle relative to the corresponding MVC.  
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Figure 5: The activation patterns of the right and the left 
erector muscles in performing a sequence of half notes. 
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Figure 6: The activation patterns of the right and the left 
erector muscles in performing a sequence of 16th notes. 
 

We notice a big difference between them: in case of 
the half notes playing, the right and the left erector 
muscle of spine are almost synchronizing, but in case of  
the 16th notes playing, they are completely in oposite 
phase. This suggests that the player is employing 

different modes in playing these two tasks. This fact 
suggests the importance of the back muscles usage in 
performing the bowing tasks.  
 
Discussion 
 

We can now show the feasibility of our hypothesis 
about controlling the bow speed by the back muscles 
impedance adjustment, by looking at two different kinds 
of evidence. 

First, we consider the remarks typical of music 
teachers’ advice on students’ posture.  They first insist 
on the importance of posture with a straight backbone.  
One of the authors had an experience that a violin 
teacher pushed his student from the back to make sure 
that he stands up steadily to resist such sudden force 
from the back.  We have also observed a sitting violinist 
playing with an almost standing posture. He claimed 
that this kind of posture produced his best performance.   

Second, consider the results of experiments stated 
above. Both of the two experiments showed the 
importance of the back muscles in performing the bow 
change. The first result is related to pre-shaping in 
performing the bow change. We tend to lean our body 
slightly to prepare the change of the bowing direction. 
This slight leaning produces a force to pulling the bow 
toward the center of the body after changing the bowing 
direction. Since it takes time for leaning the body, there 
may be a case that such leaning action cannot be 
finished in time when the music note requires fast action. 
In such a case, we need to make the impedance of the 
back muscles higher and to make the propagation speed 
of the backbone whip faster.   

The result of the second experiment is rather 
surprising. We did not expect such a big mode change 
in performing such simple tasks. One possible reason 
why there appeared anti-synchronization pattern is to 
realize the fast movement of the 16th notes by activating 
the right and the left erector muscles alternatively.  

 
Conclusions 
 
In this paper, we introduced the whip’s equation of 
motion and tried to explain the bow arm movement 
based on the model.  First, we observed the phase shift 
phenomenon in the equation s = ct describing the 
maximum speed propagation along the whip.  It is 
interesting that the phase shift is actually proportional to 
the time whose coefficient c is the speed of sound in the 
whip.  Since c is proportional to the square root of the 
Young’s modulus, there is the possibility of controlling 
the propagation time by adjusting the stiffness of the 
whip.  In our case, what we need to do in controlling the 
bow change speed is to adjust the stiffness of the back 
muscles.  It is not always necessary to propagate the 
whip wave very fast.  There may be a case that slower 
propagation is preferred.  In general, a music piece with 
slow tempo does not require a fast preparation and 
furthermore, slow preparation often yields a better and 
richer sound.  The reason why we can obtain better 
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 sound by slow preparation is to be clarified in our future 
work.  One possible interpretation is the principle of 
noise avoidance in slow preparation.  In addition, in 
practice, it is hard to keep the back muscles strained to 
achieve the high impedance and therefore we need to 
rest time after time.  If players can choose the 
adjustment level of impedance depending on the speed 
of the notes, the problem will be solved.  The 
controllability during performance is essential in 
increasing skill as well as in avoiding fatigue from 
heavy performance.  

In this research, we tried to validate the whip model 
for the bow change. We succeeded in providing several 
observations in supporting our hypothesis. However we 
did not provide a direct evidence to prove the whip 
model hypothesis. We need to show that a phase shift 
phenomenon of maximum speed occurrence from 
proximal extremity (e.g., the hip) to the distal end (e.g., 
hand or finger) really happens in conjunction with the 
high impedance of the back muscles. To show this fact, 
we can employ a method developed by Ueno and 
Furukawa [4] which finds peak timing points of various 
joints efficiently.  
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