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Abstract: Most studies of EMG signals are based on
cither the analysis of their stochastic parameters in
the time domain or in the frequency domain. In this
paper, from the analysis of the muscle behaviour (i.e.
contraction and extension movements) during a
controlled repetitive exercise activity, it is proved
there are two main parameters of the EMG signal:
lag time and fractal dimension, based upon chaotic
behaviour, that could be used as fatigue indicators.
With this goal in mind, two software applications
were developed with LabVIEW®’s programming
features. These applications allow for the estimation
of these two parameters after signals have been
captured.

Introduction

Surface electromiography is a non invasive very
useful method to study normal muscle behaviour as well
as muscle myopathies. Furthermore, surface
electromyiographic signal analysis has been shown to
be a powerful tool to quantify physiological fatigue.

Lineal methods, until now, have been widely used to
analyze and characterize biomedical signals, but they
are beginning to reach their limits of utilization [1]. In
reference to electromyography, specifically in the
analysis and utilization for quantifying fatigue, several
lineal techniques are commonly used. For example,
shifting the mean power frequency (MPF) toward lower
frequencies and increasing the root mean square (RMS)
of the time signal. Today there is a tendency to use
methods in order to get a whole characterization of
EMG signals. With this goal in mind, Horjth developed
a parameter set, which initially was utilized to describe
the EMG signals changes in the temporal domain, but is
now demonstrating it’s effectiveness in power spectral
evaluation of surface recorded EMG signals.
Nevertheless, all these analytical methods have several
limitations. For example, the increase of fatigue not
only produces a frequency shift, but also changes shape,
an aspect which this method is unable to quantify.

This sensibility to the spectral shape has been
proved with the RMS parameter and after that, other
variants of it that have been used. Everything seems to
prove poor consistency of these methods with the
analysis of signals generated by complex and non lineal
living creatures. Recent experimental results have

shown that complex systems -- and more precisely in
deterministic chaos — This discovery opens up new
points of view of the investigation. Using these kinds of
techniques to analyze temporal series could be a
promising alternative [2].

Unfortunately, tools used for characterizing non
lineal systems are very different from lineal systems,
mainly when it comes to try to approximate complex to
lineal systems. In addition, parameters that describe non
lineal processes — and are used to identify and classify
them — do not have an interpretation as clear as the
lineal descriptor.

In addition, although the first investigations
concluded that this class of signal is random in nature,
but not chaotic, other later dated papers [3], have proved
it to have a chaotic behaviour. In fact, non lineal
characterization of EMG signals has been used to
distinguish several myopathies [4] and more recently
other attempts to quantify physiological fatigue from
signals recorded off an isometric contraction of the
trapezius muscle [5], [6].

Materials and Methods

To extract quantitative information about the
dynamic of observed EMG signals when they are
working as a chaotic system, the first step to delineate
some of the underlying dynamic is the construction of
the process phase space. Phase space includes a set with
all probable states that could be reached by certain types
of systems. Each state is represented by a point in a D
dimensional space, where the coordinates are
corresponding with value of the state variables. When
time increases, those states describe a trajectory. For
dissipative systems the trajectory converges to a subset
with lower dimension, for chaotic systems, this subset is
called an attractor. Taken’s Theorem determines how to
construct an attractor of dynamic system from only
knowledge of one dimensional time sequence behaviour
of the system. Then, from a recorded signal:

I'(n)= {X(tl),X(tz),...,X(tn )} (1)

The theorem says that if we are able to observe this time
serial then the geometric structure of the multivariate
dynamics can be unfolded in a space made out of new
vectors D dimensional. Furthermore, it is admitted that
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the behavior of the original temporal series I'(n) is due
to the interaction with the rest of variables (D-1), then
important information in I'(n) has to contain properties
of the D-dimensional system. It is possible to construct
a D-dimensional set of points from a variable I'(n), in
the following way

I'(n,D) =
{xi = (x(ti )7 x(ti + T)""’x(ti +(D - 1)T))} )

Where © > 0 is in integer called time lag and D is
called embedding dimension. The points of the new
space are constructed by the xi coordinates and integer
multiples of the same lag x(ti+jt). Of course, correlation
between two consecutive points will be a function of the
time lag value; the higher it is, the lower the correlation
will be. That leads one to think that there is a relation
between set ['(n,D) and the unknown set:

T(D) =t = ()0 ()nxp ()} @

If the last dynamic system is chaotic — in addition it
has a low dimension attractor—the system properties
will be reproduced without ambiguity at the
reconstructed attractor. Furthermore, it will be possible
to reconstruct the whole system only from temporal
recorded series. Needless to say, it is necessary to
estimate the time lag and embedding dimension in order
for the reconstruction of the unknown system.

First at all, to estimate the time lag the suggestion of
Fraser [10] is used, determining average mutual
information, IM:

P(x(n), x(n + T))
P(x(n),x(n +7))log, { PO(n)P((n + r))}

(4)

x(n),x(n+7)

The first minimum of the average mutual
information is chosen. Mutual information could be
considered as a nonlinear generalization of the
autocorrelation function that permits calculating when
the values x(n) and x(ntt) are so sufficiently
independent form each other as to be useful as
coordinates of the time lag vector, but not independent
enough as not to be connected at all.

Chaotic systems often exhibit fractal structures.
Then, a characterization of the chaotic signals
estimating their fractal dimension (Df) is possible.
Fractal dimension is a characteristic of the geometrical
figure of the attractor and a function of how attractor
points are distributed in the phase space. Fractal
dimension is invariant and independent of changes in
initial conditions and coordinate system. So, it is
possible to be evaluated in the reconstructed phase
space made out of time delay vectors.

An efficient form to estimate fractal dimension is to
calculate the Hurst exponent. The Hurst exponent for
temporal series is related to fractal dimension by:

Df=2-H (5)

The Hurst exponent, H, is a self-similarity
parameter, O<H<I, that measures the long range
dependence in a time series. For H=0.5 the behaviour is
Gaussian, however in the cases where H<0.5 represents
anti-persistent behaviour and if H>0.5 is a fractional
Brownian motion with increasing persistence strength
when H is higher, it is a long memory process.

There are several methods to estimate the Hurst
exponent, one of the most popular is R/S analysis, it can
be found in Weron [11]. Previously, this method is not
any assumption about probability distribution, therefore
it is suitable to be used for nonlinear stochastic systems.

The time series with N points, is divided into
windows of n elements, with or without overlapping, we
have chosen non overlapping windows, there will be d
windows, where dxn=N. For each window m:

1.  Mean Em{x}is calculated.

2. Standard deviation om{x}is calculated.

3. Data are normalized by subtracting the mean:

Ziw =X, —E, {x}parai=1,...n (6)

i,m

4. New values are created by adding up the data
points:

Vim = le.,m parai=1,...,n (7)
=l

5. Range, Rm, is calculated by subtracting the
maximum value from the minimum value:

R, = Max{yl’m soVnm }— Min{yl’m I T } (8)

6. Range, Rm/Sm is calculated by dividing the
range into the standard deviation:

d
(R/S), :lZRm/Sm ©)
d m=1
7. Length is increased. Steps 1 to 7 are repeated
8. Hurst exponent is calculated by using a linear
regression line with log(n) as the independent
variable. and log(R/S),, as the dependent
variable.

In order to minimize program execution time, two
powered lengths series have been chosen.

In order to verify the techniques described, first, the
EMG signals were recorded from trapezius and biceps
of 12 subjects with ages between 23 and 26 years, all
male with weights between 72 Kg. and 80 Kg. The first
six subjects (Group 1) had normal muscular structure,
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the last six subjects (Group 2) had a better muscular
condition.

The trapezius muscle election as one of the muscles
where EMG signals were recorded was mainly
motivated because this muscle would support the most
severe effort at the test proposed. It was elected as well
because of its easy accessibility, good SNR and low
contamination with other artifacts. Besides, it was
recorded EMG biceps muscle. Results recorded off
biceps — muscle with a little muscular activity at the test
designed -- could be easily correlated with the results
from trapezius muscle.

The exercise was developed in a gymnastic machine
chosen ad hoc. Subjects had to do successive
contraction and extension movements under a controlled
effort with two different fixed rhythms. Three subjects
from each group performed exercise for 40 minutes
(Exercise A) and 20 minutes (Exercise B). Data
registration was implemented using Ag-AgCl passive
surface electrodes, to reduce inter-electrode impedance ,
the skin underlying the electrode was cleaned with
alcohol swabs prior to electrode placement. A platform
for Dbiopotencials acquisition BIOPAC-MP100 and
software tools to data biomedical exchange in European
Standard Format EDF [9], developed by EIMED.
Signals were low pass filtered, the upper frequency cut-
off was chosen 1 KHz. Gain was adjusted to allow
maximum amplification without saturation of the analog
to digital converter. Sample frequency was fs=2 KHz.
Once signals were recorded, samples were segmented
with 10 s duration.

Results

Several interesting results are shown using
algorithms developed with LabVIEW® programming. It
is possible to verify the turn of the attractor trajectories
at the phase space of the data segments when time lag is
reached --On the other hand, when several phase spaces
of different segments are represented, and those
segments belong to distinct time series, as the muscle
becomes more fatigued, new objects appear and the
number of trajectories increases (Fig. 1).
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Figure 1. Phase space diagram. Left: Non fatigue; Right:

Fatigued

Because of that, these features could be used as
alternative indexes for fatigue.

From the mutual average information representation
time lag is calculated. In order to do it, the first
minimum of the mutual average information is
calculated. Fig. 2. shows mutual information for a
segment belonging to subject Group A who did exercise
B.
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Figure 2. Mutual Information.
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Figure 3: Time lag evolution.
Left: Exercise A (Hard); Right: Exercise B (Soft);

On other hand, Fig. 3 shows a polynomic
interpolation of the time lag during exercise B for a
subject belonging to Group 1. Time lag always
increases for subjects who belong to Group 1. The
longer the exercise the more time lag increases. The
same figure shows time lag evolution for a subject
belonging to Group 1 who did exercise B, time lag
increases when the test goes on, when same subject
performs exercise B, time lag increases as well, but not
so much because of the more reduced time of the
exercise. Very interesting results are proved for the
subjects belonging to Group 2 who perform exercise B,
(Fig .4) because time lag remains almost constant; that
could be caused by their muscle structure and excellent
fitness. To summarize, the exercise performed by this
subject was unable to produce any kind of fatigue.
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Figure 4: Time lag evolution. Group 2 and exercise B

After calculating time lag, fractal dimension of the
same time series was estimated. Hurst Exponents were
estimated with non overlapping windows, 16384
samples each. Fig. 5 shows fractal dimension for one of
the subjects during the whole test. It is possible to
verify as fractal dimension decrease when fatigue
appears, so it could be used as fatigue indicator as well.
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Figure 5. Fractal Dimension.
Left: Group 1- Exercise A; Right: Group B- Exercise B

Table 1 shows an average variation of time lag and
fractal dimension from the beginning of the exercise to

the end for all groups and exercises performed.

Table 1: Variation of time lag and fractal dimension

Variation Group 1 Group 1 Group 2 Group 2
(%) Exercise A | Exercise B | Exercise A | Exercise B
T 30 12 5 3

Df 10 8 4 2
Discussion

The algorithms implemented allow us to estimate
Hurst exponent and lag time without any a priori
assumption on the stochastic process and on the
probability distribution of the random variables entering
the test.

We have reported preliminary results concerning the
time lag and fractal dimension of EMG temporal series.
We calculated both parameters in order to quantify
physiological fatigue. The ability of the techniques to
perform such analysis is proved by the increasing of the
time lag and decreasing of the dimension fractal.

These results have to be considered as an
encouraging starting point for an automatic estimation.
Time lag could be considered a good resolution

estimator. Experimental data indicate a little poor
sensitivity of the fractal dimension to the presence of
fatigue.

Hurst exponent exceeds 0.5 in all subjects, that
shows a long-time memory effect. EMG temporal series
have a persistent behaviour, like most natural
phenomena.

If the scaling exponent reveals the complexity, we
may say that the complexity of the EMG pattern in
fatigued condition is decreased. If the muscle reaction to
a muscular activity is well defined then it could be
hypothesized that fractal dimension will decrease.

Conclusions

Non lineal methods are efficient alternatives to the
characterization and classification of EMG signals
because of the unique nature of that kind of signal.

The characterization of the EMG permits
quantifying physiological fatigue by using two related
parameters: time lag and fractal dimension, both of
them could be estimated in real time. Further studies in
larger populations are needed to confirm those results.
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