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Abstract: The localisation of pills and capsules in the 
intestinal tract can be accomplished by means of the 
Magnetic Marker Monitoring method. Here, the 
field of magnetically marked drug forms is measured 
continuously with sensor arrays outside the body. 
Different approaches exist to compute position and 
strength of the marker from the measurement data. 
We compare two such localisation algorithms, the 
multipole expansion method and the Levenberg-
Marquardt method, in terms of their speed, accura-
cy and stability. Simulations are done with respect to 
the 195-channel vector magnetometer Argos 200. 
When tracking time series data, the multipole 
expansion method proves to be seven times faster 
than the Levenberg-Marquardt method. The locali-
sation accuracy is equal for both methods, and 
depends mainly on the sensor geometry. 
 
Introduction 
 

The localisation of magnetically marked capsules 
and pills inside the human body is used for examina-
tions of the intestinal tract and of the transport and 
dissolution of drug forms [1,2]. Markers act as 
permanent magnets, and can for their small dimensions 
be described as dipoles. Since no appropriate closed-
form solutions for the determination of the dipole 
location from a noisy measurement are known, 
linearisation techniques and iterative search algorithms 
are used to accomplish this task. 

The dipole localisation from noisy measurements 
can be formulated as a non-linear least squares problem 
and solved with the Levenberg-Marquardt method [3]. 
We compare the localisation characteristics of the 
Levenberg-Marquardt method and a new multipole 
expansion method [4]. 
 
Materials and Methods 
 

Levenberg-Marquardt method: The Levenberg-
Marquardt method is used to find an optimal solution in 
the space of x in order to minimise the quadratic norm 
of the error function vector F(x), see the left side of 
equation (1). The Levenberg-Marquardt method is pro-
vided with this error function F and the Jacobian matrix 
J, which contains the partial derivations of F with 

respect to the coordinates of the search space x as 
columns. We use the Levenberg-Marquardt implemen-
tation of the Matlab Optimisation Toolbox with cubic 
polynomial line search. The error function of our 
problem is the difference of the measured magnetic field 
and the dipole field of marker m at position rq. As both 
have three dimensions, the dimensionality of x is six. 
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The dipole field Bd,i at sensor i with sensor normal 
direction di can be written as a dot product of function 
Fd,i, which depends only on the dipole position rq, with 
marker strength m. 
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Here vector and length r mark the position of the i-th 
sensor (denoted with p) with respect to the marker 
position (denoted with q). The corresponding Jacobi 
matrix contains three columns with derivatives with 
respect to the coordinates of the dipole and three 
columns with derivatives with respect to the marker 
strength components. 
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The derivative with respect to the j–th dipole coordinate 
is: 
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The derivation with respect to the j–th dipole strength 
component is: 
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Equations (1) to (6) facilitate the calculation of F and J 
for the six-dimensional Levenberg-Marquardt locali-
sation. 

Three-dimensional search space: In order to reduce 
x to the three dimensions of the marker position rq, the 
linear sub problem of finding the optimal marker 
strength m for a given position rq is solved: 
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The Levenberg-Marquardt method is provided with this 
error function F and the Jacobian matrix J, which is the 
partial derivation of F with respect to the Cartesian 
components of the dipole. 
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The j–th row of J can be expressed as 
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The rows of F´ for each sensor i and derivation direction 
j compute as follows: 
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Equations (7) to (10) facilitate the calculation of F and J 
for the three-dimensional Levenberg-Marquardt locali-
sation. 

Homogeneous field suppression: Disturbing fields 
result from sources which are remotely located 
compared to the magnetic marker position and the 
sensor geometry. For this reason, their magnetic field 
measured is predominantly homogeneous. Contrary the 
magnetic field of the magnetic marker is strongly non-
homogeneous. The suppression of homogeneous fields 
from measurement vectors and dipole fields results in a 
high suppression of disturbing fields, and only in a 
small degradation of localisation accuracy. The 

homogeneous field suppression is performed by left side 
matrix multiplication of all magnetic field vectors with 

( ) TT
g DDDDIM ⋅⋅⋅−=
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Here Matrix D contains the normal directions of the 
sensors in its rows. Mathematically equation (11) is a 
solution to a linear least squares problem, comparable to 
equation (7). Since D does not change, Mg must be 
computed only once. It can be used both for the six-
dimensional and the three-dimensional implementation 
of the Levenberg-Marquardt localisation method. 

Multipole expansion method: The multipole 
expansion of the magnetic field measurement (eq. 1) 
gives form functions Fm and multipole moments cm for 
the field of the marker as well as form functions Fex and 
coefficients cex for disturbing fields from remote 
sources. Their respective fields are depicted in Fig. 1. 
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Figure 1: Dipole Fm
j and quadrupole fields Fm

j,k, 
homogeneous fields Fex

j and gradient fields Fex
j,k. 

 
The matrix notation of significant elements of the 
multipole expansion of marker and disturbing fields and 
residual fields Bres is 

res
0

resexmmeas 4
BcFBBBB +⋅=++=

π
μ . (13) 

The suppression of spatially correlated noise is achieved 
by neglecting the outer multipoles and the marker 
localisation works by combining dipole and quadrupole. 
In this manner the coefficients c found by solving eq. 13 
may efficiently be used. A comparison of the multipole 
expansion (eq. 12) with a Taylor series of the marker 
dipole field, see [4], gives equality of marker strength 
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 and dipole moments (14a) and a linear relationship 
between quadrupoles cq, marker moment m and marker 
position r` (14b). 
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Here, the quadrupole vector cq is a linear independent 
representation of the quadrupole tensor (15a) and 
Matrix m contains the elements of the marker moment 
(15b). 
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The principle behind eq. 14b is visualised in fig. 2 for 
shifts along and perpendicular to the marker direction. 
 

 
 

Figure 2: Localisation principle using dipoles and 
quadrupoles. 

 

Sensor noise and localisation accuracy: The effect of 
low sensor noise (sufficiently high SNR) on the 
localisation result can be described with a linearised 
model. The corresponding localisation error results from 

2
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which is again a linear least squares problem and can be 
solved with the pseudo inverse of the Jacobi matrix J: 
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The vector x contains the localisation offset corres-
ponding to the noise field vector Bn. If we use the six-
dimensional Jacobi matrix, x contains also the corres-
ponding offset for the marker strength at position 4 to 6. 
If the sensor noise vector Bn contains the standard 
deviation of Nsen independent Gaussian noise processes, 
the corresponding localisation error x contains also 
Gaussian distributed variables, which compute to 
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SQUID system Argos 200: The sensor geometry of 
this multichannel system from AtB (Advanced 
technologies Biomagnetics, Pescara, Italy) is depicted in 
figure 3. The triplet design with orthogonally oriented 
sensors enables full vector field measurements. The 
sensor triplets are placed on a ground plane (z=0) and 
three reference planes above. 

 

 
 
Figure 3: Sensor geometry of the Argos 200 Squid 
magnetometer array with orthogonal sensor triplets. 
 
Results 
 

The localisation speed depends on the number of 
iteration steps needed to find the marker dipole with the 
desired spatial accuracy. The improvement in the 
marker position after one iteration step depends highly 
on the starting distance between search point and 
marker position. For the multipole method this relation 
is given in figure 4. If this distance is not bigger than 
20 mm, 2-3 steps of the multipole expansion method 
suffice to reach an accuracy of less than 0.1 mm. 
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Figure 4: Remaining multipole localisation error depen-
ding on search distance for one iteration step, marker 
position 300 mm beneath the measurement plane 
 

The Levenberg-Marquardt algorithm facilitates the 
same desired accuracy within 2 iteration steps. For each 
step the Levenberg-Marquardt search direction and the 
optimal step length (via cubic polynomial line search) 
must be computed consecutively. For this reason several 
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 function calls including the computation of dipole field 
and Jacobi matrix are necessary per iteration step. 
 

 
 
Figure 5: Localisation standard deviation, 2 Amm2 hori-
zontal marker, 100 fT sensor noise 
 

 
 
Figure 6: Localisation standard deviation, 2 Amm2 ver-
tical marker, 100 fT sensor noise 
 

Numerical tests for the behaviour of both 
localisation techniques have been done with the tracking 
of actual patient data recorded with the ARGOS system. 
With a 2.40 GHz Pentium 4 CPU a localisation speed of 
225 data points per second could be reached for the 
multipole method compared to 32 data points per 
second when using the Levenberg-Marquardt method. 
With the multipole expansion method, the number of 
function calls needed for one time step equals the 
number of iterations, and is normally not higher than 3. 
The Levenberg-Marquardt method with cubic 
polynomial line search requires 11 function calls for 2 

iteration steps for most data points of the same 
measurement. 

The dependence of the localisation accuracy on the 
level of spatially uncorrelated noise is equal for both 
methods. Figures 5 and 6 show the standard deviation of 
the localisation result for different marker positions 
below the measurement plane (z-value) and offset to the 
symmetry axis (ρ-value). The signal to noise ratio for 
the chosen marker strength and noise level is 77 at the 
nearest sensor. The influence of the marker direction on 
the localisation deviation is small due to the vector 
properties of the sensor array. The localisation deviation 
is predominantly circular and depends mainly on the 
distance between sensor array and marker. 

The localisation radius around the marker position 
gives the range of stable localisation with the multipole 
method. This radius has been found to be above 70 mm 
for the Argos 200 system and a marker depth of 300 
mm [4]. This is sufficient for the successive localisation 
of marker positions from time series data. 
 
Conclusions 
 

The multipole expansion is an advantageous method 
especially for the online tracking of magnetically 
marked capsules. The tracking of marker movement 
data implicates short search distances, since the 
preceding localisation result may always be used as a 
search point for the next marker position. This ensures 
stability and time efficiency of the multipole expansion 
method. Furthermore the multipole expansion method 
combines numerically efficiently the suppression of 
spatially correlated disturbing fields and the localization 
of the magnetic dipole, since both use the same set of 
parameters, the multipole coefficients. 
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