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Abstract: Analysis of blood vessels in images of reti-
nal fundus is an important and non-invasive proce-
dure for the diagnosis of many diseases. To derive 
useful clinical features, such as vessel diameter and 
tortuosity, an accurate segmentation of the vessel 
network has to be performed. In this paper we de-
scribe a novel classification-based tracking algo-
rithm that enhances the performance of classifica-
tion based techniques by extending the observation 
window upon which classification takes place, and 
enforces robust estimate of the local geometry of the 
vessel. 
 
Introduction 
 

Analysis of blood vessels in images of retinal fundus 
is an important and non-invasive procedure for the di-
agnosis of many diseases [1,2]. To derive useful clinical 
features, such as vessel diameter and tortuosity, an accu-
rate segmentation of the vessel network has to be per-
formed.  

The tracking-based segmentation methods proposed 
in the literature start from a set of seed points and pro-
ceed along the corresponding vessels, using either 2-D 
matched filters [3] or classification techniques (vessel or 
non vessel pixels) based on vessel profiles [4]. Seed 
points can be initially found from easily recognizable 
areas of the image (e.g. the optic disc [4]) but this ap-
proach may fail to track peripheral and low-contrast 
vessels. A more principled approach is sparse tracking 
[5], where seeds are found over the whole image. This 
in turn requires a joining algorithm that connects seg-
ments resulting from separate tracking of the same ves-
sel. Compared to global techniques, that process the 
whole image by convoluting it with a pyramidal set of 
2D Gaussian templates [6], tracking has obvious advan-
tages in terms of computational efficiency. Furthermore, 
tracking techniques also provide a way of locally adapt-
ing vessel segmentation to image features, since an es-
timate of local luminosity can be calculated as tracking 
progresses, although global techniques can be provided 
with adaptation as a post-processing stage of the convo-
lution result [7]. Also, it should be noted that, in order to 
recover useful clinical information, vessel tracking must 
be necessarily applied to produce a geometrical model 
of the vessel. 

A problem that may affect classification methods is 
that small vessels and background are often non-
separable in grayscale space. This issue is particularly 
critical for profile-based methods, where classification 

is performed over one or few cross-sections of the ves-
sel under exam [4]. Even apparently well-defined ves-
sels may cause the tracking to halt wherever noise or 
natural texture (pigmentation) of the free fundus cause 
local drop of the contrast or lack of separability. Com-
putationally-demanding matched filters tackle this prob-
lem trading-off computational cost with sensibility, as 
the whole grayscale dynamics of the vessel profile are 
considered over several consecutive profiles convoluted 
with a Gaussian-shaped kernel (figure 1).  
 

 
 
Figure 1. Matched filters based (a) and profile classifi-
cation based (b) vessel tracking.  
 
Methods 
 

In this paper we describe a novel classification-
based tracking algorithm that enhances the performance 
of these techniques by extending the observation win-
dow upon which classification takes place, and enforc-
ing robust estimate of the local geometry of the vessel. 
The rationale is to recover that depth information typi-
cally neglected in profile-based methods. The key fea-
tures of the proposed algorithm are:  
 
• A seed finding procedure that seeks for the two 

goals of providing a satisfactory initial set of seeds, 
and allowing tracking to proceed whenever changes 
in vessel topology (e.g. bifurcations, branching, or 
local “holes” in the vessel) and lack of con-
trast/separation cause the current tracking to halt  

• Robust estimate of vessel borders based on the 
Hough Transform (HT) that provides the tracking 
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with an estimate of local caliber and direction, so 
that the following tracking point can be determined  

• Local adaptation to contrast variations with variable 
computational complexity, yielding fast adaptation 
in normal cases and more sophisticated adaptation 
when the simpler technique fails. 

 
Seed finding procedure 
 

An initial seed-finding algorithm, based on simple 
edge detection over a regular grid, is run. The keystone 
of seed finding is bubble search procedure we previ-
ously developed [5] that estimates caliber d and direc-
tion θ of each candidate seed by classifying an annular 
region (seed support) around the candidate seed. Inner 
and outer radii of the region are proportional to the dis-
tance between the two edges found. Since no estimate of 
local contrast is available at this stage, vessel-non vessel 
binary classification is achieved using Fuzzy C-Means 
(FCM) clustering [4]. The resulting estimate is strength-
ened with respects to the algorithm currently found in 
literature by checking geometrical consistency of the 
estimated caliber d and direction θ with the initial edges 
distance d’ given an empirical tolerance Δd (Figure 2)  
 
              [ ]ddddd Δ+′Δ−′=∈ θθ cos,cos  (1) 

 
If (1) is satisfied the seed is considered for further 

processing.  
 
 
Robust Vessel Estimate 
 

Once a valid seed is determined, tracking main pro-
cedure is started. Under the assumption of the presence 
of a vessel, two vessel borders should be found within a 
rectangular region (vessel support) oriented according to 
the previously found direction (prior information) and 
including an approximately straight section of the ves-
sel. In order to allow automatic contrast detection and 
classification, enough background should be included in 
the support. Under these guidelines, empirical observa-
tions suggested us to have a support that is 3d wide and 
d deep along vessel direction, expecting vessel curva-
ture to be locally negligible.  
 

 
 
Figure 2: Edge detection (squares) and bubble search 
(circles) (a). Geometrical consistency of the estimated 
seed with the initial edges. 

Vessel borders are therefore modeled as straight 
lines Λ:{ρ,φ} described in terms of distance ρ from the 
axis origin and angle φ (figure 3). Line detection is 
achieved by using robust Hough Transform (HT) [8] 
that uses a continuous voting kernel  
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where ξ is the distance of the border point under in-

vestigation from the considered border model Λ and w 
is the minimum distance from the model in order for a 
border point to contribute (vote) to the HT accumulator 
in ρ,φ. Equation (2) is continuous and differentiable and 
yields greater outlier rejection and robustness compared 
to the ordinary top-hat voting kernel found in standard 
HT [9].  

The computational complexity of HT, which seeks 
for lines by finding maxima in the 2-dimensional accu-
mulator space, is reduced by using the previously calcu-
lated border vessels as a prior estimate (with some un-
certainty) for the two intercepts in the vessel support. 
The angular drift (direction change) is also limited 
within a maximum expected curvature. In other words, 
given the previously tracked borders, not all the possible 
new borders in the support are accepted. Therefore, the 
maxima finding problem is reduced to a quasi-1D prob-
lem (Figure 4) 
 

 
 
Figure 3: Hough Transform (top vessel border). Vessel 
support (a) is thresholded and candidate border points 
(circles) are found (b) compatible with prior tracking. 
Any candidate border line Λ is compared against the 
number of points that significantly vote for it (c). 
 

If two (and only two) vessel border lines are found, 
consistent with the current vessel caliber and direction, 
new vessel center, diameter and direction are estimated 
and the support is moved further along the newly esti-
mated vessel direction. If the pattern of lines found by 
HT suggests a change of vessel shape (e.g. bifurcation) 
or is not consistent with a vessel structure (e.g. HT does 
not detect one of the borders), bubble search is reapplied 
in the attempt to find new seeds. The whole procedure is 
iterated until no new seeds are found. 
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Figure 4. Within the vessel support (dotted), the top 
border must lay in the shaded gray area only, deter-
mined from the previously tracked border (dashed) (a). 
Therefore, the HT accumulator is reduced to a narrow 
strip (b). 
 
Adaptive Threshold 
 

In absence of prior information, the classification 
threshold is initially determined by FCM and then up-
dated to adapt to local luminance and contrast, using a 
faster estimate. Once two vessel borders have been de-
termined, the classification threshold to be used in the 
next step is rapidly calculated as  
 
             ( ) 24.06.0 lu LextLextLintth +⋅+⋅=  (3) 
 
where, being ( )yxp ,  the pixel value in the vessel sup-
port and Aint , uAext , lAext  respectively the internal, 
upper external and lower external parts of the support 
with respects to the estimated vessel borders (figure 5), 
we define the internal, upper external and lower external 
average luminosities as  
 
                   ( ) AintyxyxpLint ∈= ,,  

                   ( ) uu AextyxyxpLext ∈= ,,  (4) 

                   ( ) ll AextyxyxpLext ∈= ,,  
 

Note that the algebra in (3) has been left redundant 
to separate and underline the empirical weighting of in-
ternal and external luminances. By applying (3), we ex-
pect to gather evidence for the estimated geometry, 
since low contrast betrays insufficient grayscale separa-
tion between pixels supposed to belong to the vessel and 
those supposed to belong to the background. In order to 
ensure enough stability and outliers rejection (e.g. 
neighboring vessels), the averages are calculated over 
two previously tracked sections and averages exces-
sively departing from the corresponding priors are ex-
cluded from (3). Still, the threshold estimate may be-
come unstable if large errors occur in border slopes, 
causing an excessive number of background pixels to be 
misclassified as belonging to the vessel, or vice-versa 
(Figure 5). This in turn starts an “avalanche effect” that 
leads to unbounded divergence/collapsing convergence 
of the vessel borders. When this diverging/collapsing 

pattern is detected over two tracking steps, tracking is 
moved back and a slower but more robust FCM-based 
threshold is applied. In other words, FCM is applied 
whenever the estimated vessel departs from the simpler 
constant-caliber model. The rationale is to optimize the 
computational effort, preferring faster average-based 
threshold estimate whenever is possible. Contrast also 
provides a termination condition if contrast falls below a 
given value.  
 
 

 
 
Figure 5. Threshold adaptation: internal (dotted) and 
upper/lower external areas (slanted) (a). A large error in 
border estimate (b) may cause threshold over-estimate. 
This in turn may cause caliber under-estimate (c) and 
collapse as tracking proceeds (d). 
 
 
Materials 
 

A set of 40 fundus images is considered for testing 
the algorithm, made of 20 normal (healthy) cases and 20 
pathological cases. Luminance and contrast drifts are 
removed using an ISO-illumination method we devel-
oped [10]. This pre-processing step also ensures uni-
form inter-images contrast and luminosity, therefore en-
suring luminance and contrast invariance. Images are 
hand-labeled by human experts in order to provide 
ground truth to be compared against the results.  
 
 
Results and Discussion 
 

Results show 92% average sensitivity and average 
6.6% of false vessels detected (table 1), with satisfac-
tory uniform performance over the images (figure 6, 7).  

Our approach combines a robust, model-based clas-
sification technique with some principles of matched 
filters methods. Vessel borders are estimated using fast 
and robust adaptive classification. The vessel is then 
validated according to its contrast value, which can be 
seen as the response of a single square-window matched 
filter. The rationale is then to minimize computational 
complexity (matched filters) by separating the geomet-
rical problem (vessel geometry) from the validation 
problem (grayscale consistency). The lack of robustness 
typical of classification methods is tackled using a novel 
algorithm based on a combination of prior information, 
Hough Transform, adaptive contrast and bubble search. 
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Table 1: overall results: sensitivity and false detections 
(mean/variance). 
 

 healthy pathological 
sensitivity % 94/2 91/5.6 
false vases % 6.9/6.3 6.4/9 
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Figure 6. Normalized sensitivity over the sets of 20 
healthy (full) and 20 pathological (dotted) images. 
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Figure 7. Normalized number of false vessels over the 
sets of 20 healthy (full) and 20 pathological (dotted) im-
ages. 
 

 
 
Figure 8. Tracking result on a test image. 
 

References 
 
[1] LEUNG H. et Al. “Relationships between Age, 

Blood Pressure, and Retinal Vessel Diameters in an 
Older Population” Investigative Ophthalmology & 
Visual Science, Vol. 44, No. 7, 2003. 

[2] STANTON A. V. et Al. “Vascular network changes 
in the retina with age and hypertension,” Journal of 
Hypertension, Vol. 13, pp. 1724–1728, 1995. 

[3] CHUTATAPE O., ZHENG L., KRISHNAN S. M., 
“Retinal blood vessel detection and tracking by 
matched gaussian and Kalman filters,” in Proc. 20th 
of IEEE EMBS International Conference, pp. 3144–
3149, 1998. 

[4] TOLIAS Y. A. PANAS S. M., “A fuzzy vessel 
tracking algorithm for retinal images based on 
fuzzy clustering,” IEEE Transactions on Medical 
Imaging, Vol. 17, No. 2, pp. 263–273, 1998. 

[5] GRISAN E., PESCE A., GIANI A., FORACCHIA 
M., RUGGERI A.: “A new tracking system for the 
robust extraction of retinal vessel structure”, in 
Proc. 26th IEEE EMBS International Conference, 
pp. 1620-1623, 2004. 

[6] CHAUDHURI S., CHATTERJEE S., KATZ N., 
NELSON M., GOLDBAUM M. “Detection of 
Blood Vessels in Retinal Images Using Two-
Dimensional Matched Filters” IEEE Transactions 
on Medical Imaging, Vol. 8, No. 3, pp. 263-269, 
1989. 

[7] HOOVER A., KOUZNESTOVA V., GOLDBAUM 
M. “Locating blood vessels in retinal images by 
piece-wise threshold probing of a matched filter  re-
sponse,” IEEE Transactions on Medical Imaging, 
Vol. 19, No. 3, pp. 203–210, 2000. 

[8] PALMER P. L., KITTLER J., PETROU M. “An 
Optimizing Line Finder Using a Hough Transform 
Algorithm” Computer Vision and Image Under-
standing, Vol. 67, No. 1, pp. 1–23, 1997. 

[9] DUDA R. D., P. HART E., “Use of the Hough 
transform to detect lines and curves in pictures”, 
Comm. Assoc. Comput. Mach., Vol. 15, pp. 11–15, 
1972. 

[10] FORACCHIA M., GRISAN E., RUGGERI A., 
“Luminosity and contrast normalization in retinal 
images,” Medical Image Analysis, Vol. 2, pp. 179–
190, 2005. 

 


