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Abstract: Our aim was to develop a computer model
of the blood flow and vascular wall mechanics in the
descending abdominal aneurysmatic aorta. The pur-
pose was to study the relationship between the flow
structure, wall behaviour, and aneurysm morphology.
Morphology of a realistic model of the aortic lumen
was based on a data obtained from a 76-year-old male
patient undergoing computer tomography of descen-
dent aorta and pelvic arteries. The geometry was cre-
ated and covered with surface mesh in the AmiraT M

software. The numerical simulation was performed in
the Fluent software. The numerical model was based
on the equation of mass conservation with constant
value of density and on the system of Navier-Stokes
equations. The constitutive relations represented the
Newtonian fluid. The inlet boundary condition was
represented by the pulsatile flow. The outlet bound-
ary condition was the pressure outlet (1.105 Pa in each
of the iliac arteries). The lumen of arteries was mod-
elled as encircled by a rigid wall and the fluid-wall in-
teraction was taken into account. The discretisation
was realized by finite element method. Collections of
maps were obtained describing redistribution of the
wall stress contours and the velocity profiles.

Introduction

Numerical simulation of the flow in the aortic system
proved itself to be a promising method for better under-
standing of the development of atherosclerotic abdominal
aortic aneurysm (AAA) and its dependence on flow struc-
ture [1]. Our first task was to create a simplified finite-
element grid of the lumen of aneurysmatic aorta and its
main visceral and pelvic branches. The second aim was
to study the blood flow through this realistic geometry,
taking into consideration the interaction of the fluid with
the vessel wall.

Interaction between a fluid and a solid continuum

A loosely coupled method of interaction is useful
for the solution of the interaction between a fluid and a
solid continuum. This method is based on an alternately
separated solution of both the fluid and the solid phase.
The interface between fluid and solid part is composed of
appropriate boundary conditions shared by both phases.

The boundary is updated during each of the time steps.
The basic algorithm is built up on two steps. The first
one represents a solution of the fluid part where the vessel
wall rigidity is taken in consideration. This configuration
is signed as initial undeformed configuration and the first
step produces the pressure field on the shared boundary
condition. The second step represents a solution of elas-
tic solid phase loaded by pressure field on its shared inter-
face. Thereby the fluid channel becomes deformed and it
is necessary to repair the solution of the fluid part where
the solid wall rigidity is again taken into consideration.
These steps are being solved up to limitation of conver-
gency.

Materials and Methods

The morphology of the computational 3-D tetrahe-
dral grid was obtained from 76-year-old male patient un-
dergoing computer tomography (CT) angiography of de-
scendent aorta and pelvic arteries because of subrenal
abdominal aortic aneurysm (AAA, length of 14.5 cm,
width 8 cm, parietal thrombus 4 cm thick; inner di-
ameter of aneurysm was 57 mm × 41 mm), affecting
also both of the common iliac arteries. The data were
transferred from a 16-row CT (Somatom Sensation 16,
Siemens, Forchheim, Germany) via the DICOM format
into AmiraT M 3.1.1 software (TGS Europe, Merignac
Cedex, France), see Fig. 1. Full spatial resolution of the
CT data matrix was preserved (512 pixels × 512 pixels,
nominal slice thickness (collimation) of 0.75 mm, incre-
ment of 0.75 mm). The calibrated image data set was
segmented semiautonomically with respect to the lumen
of aorta. Neither visceral nor parietal branches of aorta
were considered. The quality of the grid (23.000 tetrahe-
dral elements) was enhanced by adaptive resizing of ele-
ments according to vessel diameter and irregular regional
shape of the aneurysm (Gambit, Fluent Europe, Sheffield,
Great Britain).

Computer simulation of the fluid continuum by means of
the finite element volume (FEV) method

The numerical simulation was performed with use
of the commercial software Fluent (Fluent.Inc Europe).
The computations started with simulation of simple
steady laminar flow with constant values of density and
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Figure 1: CT-angiography, four-view.

kinematic viscosity. The model was then improved,
i.e. we proceeded to the modelling of an unsteady
flow, where the non-constant value of viscosity depended
on the shear rate. The power law model was used
for this purpose. For the first approach, we took into ac-
count the laminar flow of Newtonian fluid with constant
value of density ρ = 1050 (kg ·m−3) and constant value
of the dynamic viscosity given by value of kinematic vis-
cosity ν = 0.0042 (m · s−2). For this purpose, we used
the equations of mass conservation

∂ρ

∂ t
+

∂

∂yi
(ρvi) = 0, (1)

where ρ represent density and vi velocity of the fluid
stream, and the system of Navier-Stokes equations for in-
compressible continuum

∂ p
∂y j

−η
∂

∂y j

(
∂vi

∂y j

)
= ρ fi−ρ

Dvi

Dt
. (2)

The second term on the right side of equation 2 repre-
sented the material derivation of an appropriate quan-
tity. To obtain this form of Navier-Stokes equations, we
started with the equation of force conservation

ρ
Dvi

Dt
= ρ fi +

∂τi j

∂y j
. (3)

We put the the constitutive relation for the stress ten-
sor τi j into the equation 3

τi j =−pδi j +Ri j, (4)

where p stood for the pressure, δi j for the Kronecker delta
and Ri j for the dissipation tensor

Ri j = 2η ėi j + ή ėllδll , (5)

where η denotes dynamic viscosity and ή the so-called
second viscosity. The tensor of strain rate ėi j is given
by kinematic relation

Di j = ėi j =
1
2

(
∂v j

∂yi
+

∂vi

∂y j

)
. (6)

Pulsatile velocity boundary condition

The inlet boundary condition of continuum flow was
represented by the pulsatile velocity profile, which was
called velocity inlet in terminology of the software pack-
age Fluent [2]. The theory of oscillatory pulsatile flow
was described in [3]. This theory is based on the system
of Navier-Stokes equations for unsteady viscous incom-
pressible continuum

∂ 2wp

∂ r2 +
1
r

∂wp

∂ r
− 1

ν

∂wp

∂ t
=

1
η

∂ p
∂x

, (7)

where the velocity boundary condition of the wall was
set to wp = 0 and the inner radius r = R was taken into
account. The evolution of the pressure gradient in time
was used as a periodic function of time and therefore it
was useful to put the development in Fourier series form

−∂ p
∂x

= Re

[
∞

∑
n=0

A ei(nω0t+φn)

]
, (8)

where base frequency was signed as ω0, amplitude as A,
and n was the sequence of harmonic components. Re
stood for the real part of complex value in the square
brackets. For n = 1, φ1 = φ , ω0 = ω we wrote

−∂ p
∂x

= Re
[
Aei(ωt+φ)

]
. (9)

Finally, using the equations above, we converted the ex-
pression 7 into the following relation

∂ 2wp

∂ r2 +
1
r

∂wp

∂ r
− 1

ν

∂wp

∂ t
=

A
η

eiωt . (10)

This form of Navier-Stokes equations lead to Bessel zero-
order equation so we were allowed to deduce the follow-
ing form

wp = Re

{
AR2

η

1
α2i3

[
1−

J0
(
αyi3/2

)
J0

(
αi3/2

) ]
eiωt

}
, (11)

where y = r/R denoted the relative radius, α = R
√

ω/ν

stood for a frequency parameter also called the Womers-
ley number, where R was the radius of the tube (i.e. vessel
wall), η was the dynamic viscosity and ω defined the an-
gular velocity.

The solution of the Bessel function was built up
on the solution of Kelvin function [4] for the equation

x2y′′+ xy′− ix2y = 0. (12)

The common integral of this term was

y = c1J0

(
i3/2x

)
+ c2K0

(
i1/2x

)
. (13)

Function J0
(
i3/2x

)
was developed into series
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)
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( x
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 and therefore we were allowed to put

J0

(
i3/2x

)
= ber x+ i bei x, (15)

where function 16 and 17 were referred as Kelvin
function–Bessel real ber x and Bessel imaginary bei x
of the function J0.
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The stationary component of the velocity was defined
by the relation

ws =−qsR2

4η

(
1− y2) , (18)

where qs was stationary component of the final pressure
gradient which was build by stationary and pulsatile com-
ponent d p

dx = q = qs + qp. The final pulsatile velocity
in the tube was composed by the stationary velocity and
by the pulsatile velocity component of the flow, as shown
by the following relation

w = ws +wp. (19)

Figure 2 presents the development of velocity profiles
during the periodic time cycle for Womersley number
α = 21(−) .

Figure 2: Pulsatile velocity inlet boundary condition dur-
ing a periodic time cycle.

Presenting the boundary condition of the fluid part
of the model, we have to mention also the outlet boundary
condition. It was simply represented by a constant pres-
sure of 1.105 Pa in each of the iliac arteries, as adopted
from expert literature [5]. This kind of conditions were
named pressure outlet in the Fluent environment.

Mathematical model of the solid continuum FEM

The mathematical simulation of solid part was based
on the finite element method (FEM). The system showed
the behaviour of a deforming body where an isotropic,
linear, homogeneous material (described by constitutive

relation well known as Hook’s theorem) was taken into
account. The real field of movements inside the mesh
of tetrahedral elements was replaced by linear base func-
tions

u = α1 +α2 x+α3 y+α4 z
v = α5 +α6 x+α7 y+α8 z
w = α9 +α10 x+α11 y+α12 z.

(20)

The field of movements was continuous. The density
of deformation energy of the isotropic homogenous ma-
terial, where the behaviour according the Hook’s law was
expected, was given by the term

Λ =
1
2

(σxεx +σyεy +σzεz + τxyγxy + τyzγyz + τzxγzx) ,
(21)

where σ defined the main tension, ε was relative exten-
sion and τ signed the shear stress. Hook’s law could be
expressed in a matrix form

σ = E · ε, (22)

and the matrix of the elastic constants E [6] was in the fol-
lowing form

E =
E · (1−µ)

(1+ µ) · (1−2µ)
·

·



1 µ

1−µ

µ

1−µ
0 0 0

µ

1−µ
1 µ

1−µ
0 0 0

µ

1−µ

µ

1−µ
1 0 0 0

0 0 0 1−2µ

2·(1−µ) 0 0

0 0 0 0 1−2µ

2·(1−µ) 0

0 0 0 0 0 1−2µ

2·(1−µ)


(23)

and finally ε was the vector of appropriate relative exten-
sions. The values were adopted according to [7] so the
wall Young’s modulus was set to E = 2.5MPa and Pois-
son coefficient was set to µ = 0.45 (nearly incompress-
ible material). We were allowed to express the density
of deformation energy by the equation

Λ =
1
2
· εT ·E · ε. (24)

The vector ε was given by Cauchy’s form

εkl =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
(25)

Deformation energy of a tetrahedral element was given
by integrating the density of deformation energy through
the volume of the element. Applying the stiffness ma-
trix of the mesh element, the deformation energy was ex-
pressed.

The surface boundary condition represented a force
loading the appropriate surface. The directions
of the loading pressure vector were obtained by right-
hand rules in directions of the increasing nodes indices
(the vector of right sides in FEM terminology); in fact, it
was the vector of force component relevant to each of the
nodes

fc =
[

f T
1 f T

2 f T
3 . . . f T

Np

]T
. (26)
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Figure 3: Anterior view on the lumen with subrenal
aneurysm. The visceral branches of aorta were not in-
volved in the simulation.

The global stiffness matrix covered the system of re-
lations among all the nodal movements represented by
vector ∆c and appropriate components of nodal reactions
forces. These reactions forces had to be in balance with
the outer force field.

∆c =
[

∆T
1 ∆T

2 ∆T
3 . . . ∆T

Np

]T
. (27)

This balance was expressed with the term

Kc ·∆c = fc. (28)

With knowing the node movements, it was possible
to express the spatial tensions according to Von Mises
(HMH) method, as shown by the following expression

σredHMH = 1√
2
·

·√(σx−σy)2+(σy−σz)2+(σz−σx)2+6·(τ2
xy+τ2

yz+τ2
zx). (29)

Results

The developed model (Fig. 3) reflected the most sig-
nificant features of the vessel wall altered by atheroscle-
rosis and asymmetric aneurysmatic dilatation. The model
included huge and medium-sized vessels, with mesh den-
sity created adaptively according to the lumen. During
the systole, two swirls developed ventrally in the cranial
segment of aneurysm and laterally in the right junction of
aneurysm neck and sac close to the origin of right renal
artery. Both swirls persisted through the whole cardiac
cycle with maximum in end-diastolic phase. The distri-
bution pattern of stress contours according to Von Mises
HMH method was computed (Fig. 4). The highest stress
values were found in the left dorsal part of the cranial
third of the aneurysm. The velocity vectors during the
whole cardiac cycle were computed (Fig. 5).

Figure 4: Stress contours at systolic peak, left lateral view
and dorsal view.

Figure 5: Velocity vectors coloured by static pressure at
systolic peak, left lateral view.

Discussion

During the computation, we found the spatial resolu-
tion of the model to be sufficient even in the very irreg-
ular and realistic morphology of the aneurysm. The lat-
eral swirl could be caused by the effect of local irregular
bending of aneurysm neck. In our case of realistic model,
the swirls persisted through both systole and diastole. In
an idealised smooth model of AAA without branching
[1], the whirls regressed during the peak systolic flow
and (unlike in our model) other swirls originated in the
caudal segment of AAA. Our simulation of distribution
pattern of stress contours in the wall of the aneurysmatic
sac yielded heterogeneous values comparable to [7, 8],
with maximum in the dorsal part of the cranial third of the
aneurysm. As the hemodynamic parameters of the patient
under study were not included in the model, the results do
not provide the actual wall stresses of this patient – they
provide information on the stress pattern and rather char-
acterise the geometrical type of the aneurysm. Unlike Di
Martino et al. [7], we did not observe any significant ves-
sel wall displacement. The reason is that in our simula-
tion, the reference configuration of the wall model was set
after processing the very first cardiac cycle. Although the
simulation was performed for the Newtonian fluid only,
we would have expected tiny differences in flow structure
between results based on Newtonian and non-Newtonian
fluid, as our model comprised no small vessels.

The 3-D flow field in AAA depends a great deal on
the geometry of the vessel, as proved by simulations of
flow pattern in hypothetically shaped idealized and asym-
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 metric models under realistic pulsatile flow conditions
[9, 10]. However, simple geometric criteria are unreli-
able in modelling AAA biomechanics and the potential
for rupture of an individual AAA can not be estimated
in simulations based on statistics from aggregate popula-
tions [11]. In realistic models involving abdominal aor-
tic branches, more information on the flow field in bifur-
cation regions can be acquired. Such information may
provide an additional insight into hemodynamic factors
involved in the predilection of atherosclerotic lesions in
AAA development [12]. When modelling vascular net-
works with multiple branches, outflow boundary condi-
tions play a great role in blood flow distribution. Also the
effect of exercise on hemodynamic conditions and flow
redistribution in aorta is considerable [13].

Patients with AAA are in danger of aneurysm rupture,
which occurs most often in dorsal or dorsolateral wall
of the aneurysmatic sac. Morphological and mechani-
cal risk factors of rupture include e.g. aneurysm diameter
and its expansion rate, loss of elastin and inflammatory
infiltrates leading to mechanical inferiority of the wall,
tensile wall stress, shear stress, flow patterns and swirls,
blood pressure, etc. [14]. We did not solve the wall shear
stress problem, as under common conditions the phys-
iologic shear stress on the inner wall is of lesser effect
than the tensile stress within the wall due to pressure in
an AAA [15]. Simulation of aneurysm fluid dynamics
and its effect on aneurysm wall mechanics in realistic 3-
D models [7] served already as a guidance to assess the
risk of rupture of the aneurysm. Similar to our study, the
authors delt with the aneurysmatic sac only, omitting the
hemodynamic influence of arterial branches of precedent
and subsequent segment of the aorta. However, the effect
of the flow in aorta branches on the flow in the aneurysm
might be significant and deserves a further interest.

Fillinger [15] analysed rupture risk over time in pa-
tients with AAA under observation, performing nonlinear
hyperelastic modelling of aneurysm wall behaviour com-
pared to CT data and blood pressure observation. A non-
invasive study of 3-D tensile wall stress was found to be
superior to maximum diameter for determining rupture
risk. The simulation of wall stress provided significant
differences of clinical use for aneurysms that could be
safely observed for longer periods or needed surgical re-
pair to prevent rupture within a short time. The effect of
3-D shape appeared to dominate the effect of blood pres-
sure and the influence of diameter. Asymmetry and wall
thickness on stresses has been studied thoroughly in both
theoretical and CT-based realistic 3-D models of AAA
[16, 17].

At present, there is need for predictive models with
realistic morphology in order to gather experience with
computational simulations correlated to clinical decision
making. Our method of finite-element grid construction
enables us to consolidate the view of clinical medicine
(i.e. vascular surgery), diagnostic imaging methods and
computational simulation. It does not describe the very
important composition of atherosclerotic vessel wall and

of intraluminal thrombus, which can be extracted from
high-resolution magnetic resonance [18]. Nevertheless,
CT angiography remains the most frequent and routine
method of aneurysm diagnostics and morphometry in pa-
tients undergoing elective surgery for this condition.

Young healthy patients with large aneurysms have a
risk-benefit ratio that favours vascular or endovascular
surgery. The presented method could be useful in patients
with boundary value of aneurysm diameter and high
surgical risk or in asymptomatic patients with smaller
aneurysms (5–6 cm) without rapid expansion. In these
patients, the final decision on surgery could be ambigu-
ous because mortality and morbidity of elective surgery
are too high when compared to conservative treatment.
Also the tensile stress analysis of the aneurysm wall has
the potential to aid management in patients who are at
high risk for surgery and have aneurysms of a moderate
size [15]. Pulsatile flow assessment should help the sur-
geon to evaluate localisation and significance of swirls in
the AAA. Whether simulation of wall shear stress corre-
lates with the risk of initial dissection of AAA, remains
unsolved. Until now, we are lacking reference papers and
case-reports bringing clinical experience with comple-
mentary results of simulation of blood flow through the
AAA of the same patient. Our prospective work will be
focused on the redistribution of the wall stress on the non-
rigid wall induced by flow structure.

Conclusions

Creating mathematical models based on real mor-
phology provides a tool integrating the view of medical
diagnostics, therapy, and modelling of AAA. The numeri-
cal results obtained in this study showed the flow features
and wall stress distribution in a model of AAA with re-
alistic morphology. The approach presented was found
to be suitable e.g. for follow-up study of patients ob-
served for the aneurysm growth, where simulations could
be correlated with surgeon’s clinical experience. Then
modelling of blood flow characteristics could be consid-
ered properly when predicting the individual aneurysm
rupture potential.
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