
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 
IMPROVING QRS DETECTION IN MULTI-CHANNEL

ELECTROCARDIOGRAPHY BY PRINCIPAL COMPONENT ANALYSIS

S.M.M. Martens∗, R.J. Sluijter∗∗, S.G. Oei∗∗∗ and J.W.M. Bergmans∗

∗ University of Technology Eindhoven/ Electrical Engineering, Eindhoven, the Netherlands
∗∗ Philips Research Laboratories/Digital Signal Processing,Eindhoven, the Netherlands
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Abstract: We propose a QRS-enhancement and QRS
detection method for multi-channel ECG recordings.
The QRS-enhancement method combines the ECG
data set into one signal in which the QRS complexes
are enhanced and the noise is attenuated. The ob-
tained QRS-enhanced signal always has an SNR that
is better than the SNR of the average of the chan-
nels. The QRS detection method extracts a QRS tem-
plate from the QRS-enhanced signal and finds QRS
complexes by cross-correlating the template with the
QRS-enhanced signal. Our results on abdominal ECG
recordings indicate that especially in adverse record-
ing situations where one or more channels display a
large amount of noise and/or artifacts, our method is
a valuable tool in multi-channel ECG recordings.

Introduction

The electrocardiogram (ECG) is commonly moni-
tored for cardiac diagnosis, heart rate estimation, and ar-
rhythmia detection. In automated ECG analysis the de-
tection of the QRS complexes is essential as it is the pre-
requisite for the recognition of several ECG parameters
like ECG intervals and wave amplitudes. Many meth-
ods have been proposed to accurately detect QRS com-
plexes [1–9]. However, baseline wander, power line in-
terference, electromyographic (EMG) interference, mo-
tion artifacts, and measurement noise hamper the QRS
detection. In this paper, all these unwanted components
will be referred to as noise. In exercise ECG, the noise
is very pronounced due to the effects of respiration, skin
resistance changes caused by the effects of respiration,
and soft tissue movement affecting electrode contact. The
use of multi-channel ECG systems offers the possibil-
ity of detecting the QRS complexes more reliably than
by using only one channel. Although the shape of the
QRS complex is highly dependent on the recording po-
sition on the patient’s body, the delay between QRS oc-
currences in different channels is negligible. As a result,
most of the QRS complexes are correlated in time for all
channels. The noise in contrast often displays a negligi-
ble inter-channel correlation. By averaging the absolute
values of the channels, which is a common procedure in
multi-channel ECG recordings, this property is being ex-

ploited. However, this method only leads to a signal that
is suitable for QRS detection if the amount of noise in
all the channels is small enough. If one or more channels
display a large amount of noise, this channel may signif-
icantly decrease the SNR of the resulting signal. There-
fore, giving different weights to the channels when com-
bining them for the purpose of QRS detection is favor-
able. The advantage of making a selection of the chan-
nels for QRS detection in adverse situations was already
recognized by Kaiser [10]. However, his approach does
not fully exploit the property of inter-channel correlation
and requires a lot of computational power. In this paper
we describe a method to automatically enhance the QRS
complexes in a multi-channel ECG system by principal
component analysis (PCA). This method generates a sig-
nal in which the correlated components in the channels,
i.e., the QRS complexes, are enhanced. In addition, we
propose a low-complexity QRS detection algorithm for
the generated QRS-enhanced signal. We first discuss the
basics of PCA and its performance in noise reduction.
Then the QRS-enhancement and QRS-detection methods
are explained in detail. The performance is demonstrated
by applying our methods on abdominal ECG data and fi-
nally conclusions are drawn.

Principal Component Analysis

Basics

Principal Component Analysis (PCA) is a mathemat-
ical technique which transforms a data set into another
data set with uncorrelated components called principal
components. We denote byX a [p× q] data matrix con-
sisting of q channels withp samples of data. We as-
sume in this paper that all channels ofX have zero mean.
The first principal componentc is by definition the linear
combination of all the channels ofX that yields maximum
variance. By assembling the channel weights contributing
to this linear combination in a[q×1] column vectoru1, c
can be expressed as

c = X ·u1, (1)

with
u1 = arg max

‖u‖=1
‖X ·u‖2

. (2)
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 The normalization constraint‖u‖ = 1 ensures that the
maximum variance ofX · u is limited. When elaborating
(2), it is found that vectoru1 corresponds to the eigenvec-
tor of the covariance matrix ofX belonging to the largest
eigenvalue [11].

Noise reduction

In order to get more insight into the signal-to-noise
ratio (SNR) features of the signal generated by PCA com-
pared to a simple channel averaging procedure, we ana-
lyze a 3-channel ECG data setX = [ x1 x2 x3 ] with
different SNRs. The first two channels contain signals in
noise with equal SNR, whereas channel 3 only contains
noisen3, i.e.,

x1 = s1 +n1,

x2 = s1 +n2,

x3 = n3,

The noisen3 is uncorrelated tos1, n1, andn2. We assume
that the variances of the channels are equal. The first prin-
cipal componentc is the combination of the channels that
yields maximum variance. From all possible combina-
tions, u1 = 1√

2
[ 1 1 0 ]T gives c = X · u1 the maxi-

mum variance. This first principal component direction
vector is also the vector that givesc the maximum SNR,
equal to SNRc = 2 ·SNRx1

. Simply averaging the chan-
nels results in a smaller SNR, i.e., SNRav ≤ (4

3) ·SNRx1
.

Similarly, it can be derived that for a data set contain-
ing channels with different SNRs PCA returns a signalc
in which the channels with a larger SNR are represented
more than the channels with a smaller SNR. As a result,
the SNR of the signal obtained by PCA always exceeds
the SNR of the averaged signal. Only in the case that the
SNR of all channels is equal, the noise reduction by PCA
and averaging is equal. In Fig. 1 this concept is visualized
by means of a 3-channel data set with synthetic signals in
which the channels have different SNRs.

A calculation of the SNR of the average of the abso-
lute values of the channels requires knowledge about the
probability density functions of the signals and the noise.
For simplicity reasons, this will not be evaluated further.
Our expectation is that the SNR is about the same as the
SNR of the average.

Normalization of channel variances

If the assumption of equal channel variances does not
apply, the presence of one (or more) noisy channel(s) dis-
playing a large variance may significantly decrease the
performance of PCA in noise reduction. If the variance of
one of the noisy channels is larger than the variance ob-
tained by combining the channels with a large SNR, the
largest PCA weight is attributed to the noisy channel with
the largest variance. As a result, the first principal com-
ponent has a SNR that is close to the SNR of the noisy

(a)

(b)

Figure 1:Illustration of noise reduction by PCA compared to
averaging. Plot (a) shows a three channel data set with synthetic
data. All channels have zero mean and equal variance. The first
two channels contain a peaky periodic signal (SNR= ∞),
while the third channel only contains white Gaussian noise
(SNR = − ∞). Plot (b) shows the calculated first principal
component (upper signal) and the average of all channels (lower
signal). The first principal component clearly has a larger SNR
than the average signal.

channel. This can be avoided by normalizing the chan-
nels with respect to their variance before deriving the first
principal component.

The normalized channelsxN, j ( j = {1,2, ...,q}) are
created by dividing each channelx j in X by its norm‖x j‖,
i.e.,

xN, j =
x j

‖x j‖
. (3)

Method

Multi-channel QRS enhancement method

The QRS enhancement algorithm is depicted in
Fig. 2. It consists of a high pass filter (F), normalization
step, and a PCA procedure. The input is a[p× q] data
matrix X containingq ECG recordings ofp samples.
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Figure 2:Block scheme of multi-channel QRS enhancement method. A data setX containingq channels with ECG recordings is
filtered by a high pass filterF . The channels of the filtered data setXF are normalized so that their variances are equal. The resulting
normalized data setXN is analyzed in a PCA procedure and its first principal componentc corresponds to the QRS-enhanced signal.

All q channels inX are high-pass filtered with a steep FIR
filter (Bartlett-Hanning window) containing 1000 taps.
We found that a cut-off frequency of 3 Hz effectively re-
moves the baseline fluctuations with a frequency below
the cut-off frequency and hardly affects the amplitude of
the QRS complex. Fig. 3 shows the magnitude character-
istic of this filter.

Figure 3:Magnitude characteristic of the high pass filter.

If the amount of baseline wander is limited, the num-
ber of taps can be reduced. This is favorable in case of
online implementation. Then, allq channels are normal-
ized such that the variances of all channelsxN in XN are
equal. For this step (3) is applied toxN . The PCA proce-
dure returns the first principal componentc, being a linear
combination of all normalized channels. As the variances
of the channels are normalized,c is not determined by
the variances of the separate channels. This prevents the
negative impact of noisy channels with a large variance
on the noise reduction performance of PCA. In the first
principal component the correlated components, i.e., the
QRS complexes, are enhanced and the uncorrelated com-
ponents, i.e., the noise, are reduced compared to the aver-
age ratio of these components in the channels. Therefore,
c will be referred to as the QRS-enhanced signal.

As large values forp highly increase the computa-
tion time for the PCA, it is desirable to calculate the first
principal component directionu1 in the PCA on a sub-
set of [p1 × q] of XN , with p1 < p. The lower limit for
p1 is the number of samples needed to sufficiently rep-
resent the statistics of the channels. For (quasi-)periodic
signals in stationary noise this lower limit corresponds to
the number of samples in one period which is about 1
second for ECG signals. In that case, the obtained princi-
pal component direction vectoru1 can be obtained from
a subset[p1 × q] of XN after whichu1 is applied to the
whole[p×q] data setXN .

QRS detection method

The QRS detection algorithm is depicted in Fig. 4.
The QRS detection method is applied to the QRS-
enhanced signalc and consists of a threshold operation
and a cross-correlator. As a simple maximum amplitude
detector can return shifted QRS positions in the presence
of noise we use a cross-correlation based method. By
cross-correlating a QRS template with the QRS-enhanced
signal the uncorrelated noise is attenuated and the QRS
complexes are further enhanced. This QRS template is
obtained from the QRS-enhanced signal itself. Assuming
that the minimum heart rate is 60 beats per minute (bpm),
every segment of 1 second ofc contains at least one QRS
complex. Therefore, we take a window of 1 second of
c and search for the sample with the maximum absolute
amplitude. In this way, the polarity of the signal (i.e., up-
ward or downward QRS complexes) is not relevant. This
sample is taken as the center of a QRS templatet. The
QRS template is created by the samples that lie within
0.05 seconds of this sample. In this way the QRS tem-
plate has a length of 0.10 seconds, i.e., the normal du-
ration of a QRS complex [12]. The elementsrm of the
cross-correlation vectorr between the QRS template and
the QRS-enhanced signal itself are defined as

rm = Σntn+m · cn. (4)

By normalizing r we obtain that the cross-correlation
value is exactly 1 when the template perfectly matches
the windowed part ofc:

rN =
r

‖t‖2 . (5)

The value ofrN is close to 1 for the places where
c has a shape that resembles the QRS template (see
Fig. 5). Therefore, the samples for whichrN is larger
than a threshold valueχ are QRS candidates. The smaller
the SNR ofc the smallerχ should be. We empirically
chose the thresholdχ = 1

2. The sample with the cross-
correlation closest to 1 of each group of successive sam-
ples gives the exact QRS position. Finally, heuristic rules
may decrease the number of false detections. We assume
that the maximal heart rate is 200 bpm implying that
the time between two detected QRS complexes cannot
be smaller than 0.3 seconds. In the case that two de-
tected QRS complexes appear within 0.3 seconds after
each other, the QRS complex with the cross-correlation
value closest to 1 is retained, while the other one is re-
jected.
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Figure 4:Block scheme of QRS detection method. The QRS-enhanced signalc is the input of the block scheme. In a window of 1
second ofc the sample with the maximum amplitude is detected. With the samples around this sample a QRS templatet with a length
of 0.1 seconds is build. The maxima of the cross-correlation function betweenthis template andc are QRS candidates. Heuristic rules
eliminate false detected QRS complexes and retain the correctly detected QRScomplexes.

Figure 5:QRS detection method applied to the synthetic sig-
nal of Fig. 1, on which an amount of white noise is added such
that the SNR is -10 dB. The upper plot shows the signal that
goes into the QRS detector. In the middle plot the normalized
cross-correlation (solid line) and the cross-correlation thresh-
old (dashed line) are depicted. The lowest plot shows the signal
again and the detected peaks (triangles).

Results

Our database consists of 15 data sets of 13-channel
abdominal ECG recordings, each containing about 30
minutes of data. The recordings were sampled at 400 Hz
and were made on pregnant women having a gestational
age between 20 and 40 weeks. As a result, the record-
ings suffer from a large baseline wander, saturation ef-
fects, motion artifacts, and power line interference.

Our QRS enhancement method was applied to all 15
data sets. For each data setX , the first principal compo-
nent direction vectoru1 was derived from one second of
data ofXN , i.e., after high pass filtering and normaliza-
tion. This vector was applied to the whole data setXN

in order to obtain the first principal component. In addi-
tion, the average of the absolute values of the filtered data
XF was calculated. The QRS detection was applied to the
QRS-enhanced signal and to the average of the absolute
values of the channels.

The QRS detection performance was calculated as

the percentage of outliers in the heart rate signal that is
derived from the detected QRS complexes. For all the
recordings, the heart rate signal was used as an indica-
tion for the actual range of the heart rate. Outliers were
defined as heart rate values that clearly fall outside this
range. The overall succes rate of detection was about 99%
for our method and for the averaging method. We con-
cluded that the overall SNR of the channels in the data
sets was too large to properly investigate the added value
of our PCA based method. Therefore, we also applied the
methods to a subset of the data, i.e., 4 channels with a
smaller overall SNR. This resulted in an overall success
rate of 98 (±3)% and 93 (±10)% for our method and av-
eraging, respectively.

In Fig. 6 and 7 the results of the methods on a num-
ber of selected channels of two of our abdominal record-
ings are depicted. Fig. 6(a) shows a short piece of a 3-
channel ECG recording in which one of the channels
merely contains noise. The average of the absolute values
of all 3 channels after high pass filtering contains a large
amount of the noise coming from channel 3. In contrast,
the QRS-enhanced signal obtained by PCA consists of a
combination of mainly the first two channels that clearly
have a much larger SNR than channel 3. As a result, the
SNR of the QRS-enhanced signal is significantly larger
than the SNR of the average signal. As can be seen in
6(c), the QRS detection method is successful in the QRS-
enhanced signal and even in the average signal for this
small piece of data.

Fig. 7(a) shows a short piece of a 4-channel record-
ing in which 2 of the 4 channels display a large amount
of baseline wander and saturation effects. The high pass
filter only partly removes the baseline wander as can be
seen in Fig. 7(b). As a result, the average of the abso-
lute values of all 4 channels gives errors in the QRS de-
tection. In contrast, the weight factors of the PCA are
such that mainly the two best channels for QRS detection
contribute to the QRS-enhanced signal. As a result, our
method returns a signal with a much larger SNR than the
average signal (Fig. 7(c)). As can be expected, the QRS
detection is successful for the QRS-enhanced signal but
fails for the average signal.
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(a)

(b)

(c)

Figure 6:3-Channel ECG recording where one channel dis-
plays a large amount of measurement noise and one chan-
nel displays power line interference. Plot (a) shows the orig-
inal channels, (b) shows the channels after high pass filter-
ing, (c) shows the calculated first principal component, with
u1 =

[

0.7 0.7 0.3
]T (upper signal) and the average of the ab-

solute values of all channels (lower signal). The detected QRS
complexes are indicated by triangles.

(a)

(b)

(c)

Figure 7:4-Channel ECG recording displaying a large amount
of baseline wander and saturation. Plot (a) shows the orig-
inal channels, (b) shows the channels after high pass filter-
ing, (c) shows the calculated first principal component, with
u1 =

[

0.0 0.1 0.7 0.7
]T (upper signal) and the average of

the absolute values of all channels (lower signal). The detected
QRS complexes are indicated by triangles.
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 Discussion

In this paper we propose a QRS-enhancement and a
QRS detection method for multi-channel ECG record-
ings. The QRS-enhancement method combines a multi-
channel ECG recording into one signal with special fea-
tures without the need to manually select the best chan-
nels and exclude the channels with small SNR. In this
signal the correlated components in the channels, i.e.,
the QRS complexes, are enhanced, and the uncorrelated
noise components are attenuated. This QRS-enhanced
signal is created by calculating the first principal com-
ponent from the ECG data after high pass filtering the
channels and normalizing the channel variances. The ob-
tained QRS-enhanced signal has an SNR that is always
better than the SNR of the channel-averaged signal. Es-
pecially in adverse recording situations in which one or
more channels display a large amount of noise or arti-
facts, our method outperforms averaging. Only when the
SNRs of all channels are equal, our method and averaging
perform equally well with respect to noise reduction.

Our QRS detection method creates a QRS template
from the QRS-enhanced signal based on maximum am-
plitude. This template is cross-correlated to the QRS-
enhanced signal itself. QRS candidates are found by
simply thresholding the cross-correlation amplitude. The
heuristic rules that are implemented decide which QRS
candidate is retained and which one is rejected. In this
method, the creation of the template is the most critical
step as it is taken as the golden standard for the QRS com-
plexes. If the noise level is larger than the signal level in
the QRS-enhanced signal the template creation may fail
and, consequently, also the QRS detection.

Our methods have been applied to 15 abdominal ECG
data sets containing channels with a large amount of
baseline wander, segments of saturation, and uncorrelated
noise. The methods were applied to the data after ac-
quisition. The results of our method on these data sets
are very promising. Yet further evaluation of our meth-
ods on even more adverse recording situations, e.g., ex-
ercise ECG recordings, capacitive ECG recordings, will
give more insight about the benefits of our methods. In
addition, a comparison of the QRS detection method to
existing methods is necessary to draw further conclusions
on its performance.

Future research will comprise an online implementa-
tion of the QRS-enhancement and QRS-detection meth-
ods, which is feasible as the computational cost is small.
It should be noted that a delay of at least one second of
data is required for our method when starting the analy-
sis. In the QRS enhancement method, the data that enters
the PCA should sufficiently reveal the statistics per chan-
nel. One second of data should be adequate for this pur-
pose. In the QRS detection method, one second of data
is needed for creating a QRS template. For some record-
ings a recurrent implementation of the QRS-enhancement
method could be advantageous. E.g., if the noise in the
channels is non-stationary, the optimal combination of

the channels for QRS detection may not be constant.
In that case, the first principal component direction vec-
tor should be updated from time to time. This recurrent
implementation brings about a number of issues related
to continuity of the QRS-enhanced signal and changing
morphology and amplitude of the QRS complexes. These
will also be assessed in our future research.
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