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Abstract: This  paper  presents  four  alternative
ways  of  initializing  camera  parameters  using
essentially  the  same  calibration  tools  (orthogonal
wands) as nowadays popular 3D kinematic systems
do. However, the key idea presented here is to sweep
the  volume  with  an  orthogonal  pair  or  triad  of
wands instead of a single one. The proposed methods
exploit the orthogonality of the used wands and set
up familiar linear constraints on certain entities of
projective  geometry.  Extracted  initial  camera
parameters  values  are  closer  to  the  refined  ones,
which  should  generally  assure  faster  and  safer
convergence during the refinement procedure. Even
without  refinement,  sometimes  not  necessary,
reconstruction results using our initial sets are better
than using commonly obtained initial values. Besides,
the  entire  calibration procedure  is  shortened since
the usual two calibration phases become one.

Introduction

Using  so  called  3D  kinematic  systems  is  one
convenient  way  for  biomechanical  analysis [1] since,
generally, it does not constrain subject movement. It is
based on processing images acquired by cameras 2]. A
necessary step  before  the  actual  3D reconstruction  is
camera  calibration.  The process  of  camera calibration
came across many stages of improvement during the last
few decades. One aspect of improvement is witnessed
by the  particular  calibration tool  that  a  user  normally
uses to calibrate cameras of a 3D kinematic system. It
went  from,  traditionally,  manipulation of  cumbersome
3D cages to nowadays sweeping the volume with only a
single wand of known length (so  called wand dance).
Prior  to  the  wand  dance  part  usually  two  (three)
orthogonal wands (with some markers) are placed within
the  calibration  volume  (Figure  1),  mainly  for  two
reasons:  to  determine  a  spatial  coordinate  system
according to  user  needs  and,  most  likely,  to  initialize
camera parameters, which are later on refined as a result
of the wand dance. The closeness of the initial solution
to  the  final/refined  one  highly  determines  speed  of
convergence and in a large number of cases determines
whether there will be any convergence or none at all 4].
This  paper  investigates  alternative  ways  to  initialize
camera parameters, using a presently popular calibration
tool – a set of orthogonal wands. 

Figure  1.  Image of the orthogonal  triad with attached
markers.  Markers  distances  [cm]  with  respect  to  the
triad origin are: X-axis 15, 30, 45, 60; Y-axis 15, 45, 60;
Z-axis 30, 60.

Equipment and Methods

Camera  calibration  and/or  metric  (Euclidean)
reconstruction  is  closely  related  to  certain  geometric
entities  from projective  geometry  3],  such  as  lines  at
infinity, circular points (2D space) and plane at infinity,
absolute  conic,  absolute dual quadric (3D space). The
idea of the proposed methods is to sweep the calibration
volume  (wand  dance)  with  two  or  three  orthogonal
wands  instead  of  one  wand  only.  In  fact,  such  an
approach  effectively  eliminates  the  need  to  also
undertake the usual calibration phase of placing on the
floor and imaging a triad of orthogonal wands  (Figure
1), prior  to  the  wand  dance  itself.  The  proposed
approach will allow us to set up constraints on some of
the  mentioned  geometric  entities,  compute  them  and
ultimately  obtain  the  camera  parameters  from  them.
Four different calibration methods were investigated.

Method 1a
1. Perform  the  wand  dance  using  two  orthogonal

wands,  each  having  at  least  two  (three)  markers
whose relative distances are known.

2. For every frame of one camera, find the  vanishing
point  of  the  wands'  directions  from  the  known
distance ratios between the markers.

3. Use the constraint that wands are perpendicular to
one  another,  to  form an  equation  system on  the
image  of  the  absolute  conic  (IAC)  ωωωω,  built  from
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 equations  of  this  type  (v1 and  v2 are  vanishing
points associated with two perpendicular wands):

v1
T���v2�0

4. Solve  the  above  overdetermined  equation  system
and  apply  the  Cholesky  decomposition  on  the
computed  ωωωω to  retrieve  the  camera's  internal
parameters.

5. Repeat steps 2-4 for each camera.
6. Chose one camera as reference, form pairs with it

and  all  other  cameras,  and  then  compute  the
fundamental matrix for each pair.

7. Knowing  the  internal  camera  parameters  and
fundamental  matrices,  compute  essential  matrices
and decompose them to obtain the cameras' relative
orientation (external parameters).

8. Having  both  internal  and  external  camera
parameters for a given camera pair, obtain the 3D
metric  reconstruction  of  the  wand  dance  and
calculate  the  wand  lengths.  Use  the  information
about true wand lengths to compute the scale factor
needed  to  transform  the  metric  reconstruction  to
Euclidean.

9. Refine  the  above  calculated  initial  cameras
parameters  enforcing  the  known  wands  lengths
and/or  orthogonality of wands. This step is left for
future  work  and  is  given  here  only  for
completeness. 

Method 1b
1. Perform  the  wand  dance  using  two  orthogonal

wands, each with at least  two markers and whose
relative distances are known.

2. For every frame of one camera, compute the plane
homography H between the plane in space (formed
by the two wands) and the image plane. 

3. Use  H to find the images of the so-called circular
points. Based on fact that these also lie on the IAC
ω,ω,ω,ω, form a system of linear equations of this type (h1

and h2 are the first and second column of H):

                �h1�i�h2 �
T����h1�i�h2 ��0      (1)

4. Solve  the  overdetermined  equation  system  and
apply the Cholesky decomposition on the computed
ωωωω in  order  to  retrieve  the  camera's  internal
parameters.

5. Repeat steps 2-4 for every camera.
6. Follow steps 6 to 9 described in Method 1a.

Method 2a
1. Perform the wand dance using the three orthogonal

wands,  each  having  at  least  two  (three)  markers
with known relative distances.

2. Chose one camera as reference, form pairs with it
and  all  other  cameras  and  then  compute  the
fundamental matrix for each pair. For every camera
pair,  compute  the  pair  of  canonical  projection
matrices P1 and P2 from the fundamental matrix:

P1�� I�0 � P2���e2�x	F	e2�vT���e2�  (2)

Here,  e2 is the epipole of the second camera,  F is
the fundamental  matrix,  v and  λ  are an arbitrary
vector  and  scalar,  respectively.  Using  these
projection  matrices,  compute  a  projective  3D
reconstruction of the wand dance. This differs from
the  true  one  by  an  unknown  projective
transformation H4x4.

3. For  every  such  3D  reconstruction  compute  the
coordinates of the three planes formed by the wands
of  the  orthogonal  triad.  The  perpendicularity  of
these planes gives linear constraints on the absolute
dual quadric Q∞∞∞∞:

�1
T�Q
�� 2�0

where ππππ1 and ππππ2 are two orthogonal planes. 
4. Solve the system of above equations, i.e. compute

the  absolute  dual  quadric  Q∞∞∞∞.  Find the projective
transformation H4x4 that will put the computed  Q∞∞∞∞,
back  into  its  canonical  position.  Apply  the  same
H4x4 on the 3D projective reconstruction of wand
dance  to  obtain  a  metric  reconstruction  of  it.
Similarly,  apply  the  transformation  H4x4 on  the
initially computed canonical projection matrices to
obtain projection matrices coherent with the metric
3D reconstruction.

5. Use  the  information  about  true  wand  lengths  to
compute  the  scale  factor  needed to  transform the
metric reconstruction to Euclidean.

6. Repeat steps 3 to 5 for all camera pairs.
7. Follow step 9 described in Method 1a.

Method 2b
1. Perform  the  wand  dance  using  two  orthogonal

wands,  each  having  at  least  two  (three)  markers
with known relative distances.

2. For every frame of one camera find the  vanishing
points  of  the  wands  directions  using  the  known
distance ratios (markers on wands).

3. Choose one camera as reference, form pairs with all
other  cameras  and  compute  the  associated
fundamental matrices. 

4. For  some  camera  pair,  compute  the  canonical
projection  matrices,  like  in  step  2  of  method  2a.
Perform  a  projective  3D  reconstruction  of  wand
dance markers, wand positions and vanishing points
(points at infinity). Based on the latter, compute the
plane at infinity ππππ∞∞∞∞ as well and find the homography
H4x4 that puts to its canonical position. Apply H4x4

on the reconstructed marker positions, to obtain an
affine reconstruction of them. 

5. Consider  the  fact  that  points  at  infinity  are
effectively representing directions  of  lines,  in our
case  orthogonal lines.  The  perpendicularity  of
wands  allows to  form constraints  on the  absolute
conic ΩΩΩΩ∞∞∞∞:
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Here, V1 and V2 are positions in 3D affine space of
vanishing  points  (points  at  infinity)  of  the
orthogonal wand pair.

6. Solve  the  overdetermined  system  of  above
equations, i.e. compute the absolute conic ΩΩΩΩ∞∞∞∞. Find
the projective transformation  H4x4 that will put the
computed  ΩΩΩΩ∞∞∞∞,  back  into  its  canonical  position.
Apply the same H4x4 on the 3D affine reconstruction
of the wand dance which is  in turn equivalent  to
obtaining a  metric  reconstruction  of  it.  Similarly,
apply both transformation matrices, from projective
to affine and from affine to metric, on the initially
computed  canonical  projective  matrices  to  obtain
projection matrices that correspond to a metric 3D
reconstruction.

7. Use  the  information  about  true  wand  lengths  to
compute  the  scale  factor  needed to  transform the
metric reconstruction to Euclidean.

8. Repeat steps 4 to 7 for all camera pairs.
9. Follow step 9 described in Method 1a.

A popular commercially available system, Smart by
eMotion  company  5],  was  used  to  test  the  proposed
methods for camera parameter initialization. The system
version used  (version 1.10,  Build  2.39)  consists  of  9
cameras (50 Hz). It is a so-called optoelectronic system
which actually reconstructs  positions  of  passive  retro-
reflective  markers,  attached  to  the  subject’s  points  of
interest.  Markers  are  illuminated  by  stroboscopic  IR
sources  of  light  attached  to  the  cameras.  The  Smart
system  is  installed  in  the  Biomechanic  laboratory  of
Peharec  Polyclinic  in  Pula,  Croatia  6].  Its software
features offer the capability to export 2D image data of
image  sequences,  initial  camera  parameters  (obtained
from putting the triad on the floor as explained in the
introduction) and refined ones.

Results and Discussion

Let us first consider results for the initialization of
internal parameters (Table 1, Table 2, Table 3, Table 4,
Table 5 and  Table 6) for all 9 cameras of the system.
Table 2 shows internal parameters which are outputs of
Smart’s refinement routines. Although even those values
are not  perfectly accurate,  it  can be considered in the
present context as the ones which are very close to the
true ones, i.e. values the optimization should converge
to.  Hence,  an  initialization  method  which  produces
parameters closest to Smart’s refined ones (Table 2) can
be,  generally  speaking,  considered  as  the  method  of
choice. Namely, the closer we are, at the beginning of
the iteration procedure, with initial values to expected
refined  (optimal)  ones,  the  better  chance  we  have  to
avoid  all  potential  problems  characteristic  to
convergence  of  refinement  algorithms.  A  closer
comparison  of  Smart’s  initialization  values  (Table  1)
and initialization values of the proposed methods (Table
3,  Table 4,  Table 5 Table 6) with the Smart’s refined

ones (Table 2) clearly indicates that method 1a (Table
3) provides values very close to Smart’s refined ones.
Furthermore,  it  seems  that  the  other  three  proposed
methods  (Table  4,  Table  5 and  Table  6)  are  about
equally  successful  in  providing  estimates  as  close  as
possible to the refined ones.

Table 1: Internal camera parameters. Initial values given
by the Smart system.

Cam.

Focal 
length [pixels]

X Y

Skew
facto

r

Principal point
[pixels]

1 751,9 387,0 12,7 400,0 175,3
2 755,6 381,0 18,3 330,3 233,5
3 676,6 343,3 7,4 272,3 200,5
4 704,1 367,4 6,4 320,7 171,3
5 765,2 399,0 5,0 335,9 170,2
6 746,8 386,4 19,0 376,9 215,3
7 691,0 354,6 9,2 285,3 164,5
8 672,7 343,3 14,4 297,2 142,7
9 672,8 348,2 10,3 292,1 156,2

Table  2:  Internal  camera  parameters.  Final  optimized
values given by the Smart system.

Cam.

Focal
length [pixels]

X Y

Skew
facto

r

Principal point
[pixels]

1 727,7 375,9 0,0 349,4 153,7
2 723,8 374,6 0,0 304,4 145,4
3 723,9 375,2 0,0 290,3 138,4
4 724,3 374,7 0,0 325,4 140,0
5 724,2 375,1 0,0 347,7 137,0
6 724,8 375,0 0,0 349,9 143,4
7 719,2 371,8 0,0 328,9 134,7
8 730,1 377,2 0,0 350,7 133,4
9 715,9 370,5 0,0 345,0 138,6

Table 3: Internal camera parameters. Initial values given
by method 1a.

Cam.

Focal
length [pixels]

X Y

Skew
facto

r

Principal point
[pixels]

1 724.8 376.2 0.0 376.9 128.0
2 749.7 390.0 0.7 321.9 136.0
3 743.4 390.7 -0.5 267.5 132.1
4 728.3 376.5 -0.3 346.9 133.5
5 715.6 373.8 -1.5 332.8 145.2
6 734.6 381.0 0.2 381.5 136.6
7 715.3 372.9 -2.3 274.4 126.3
8 704.4 370.2 0.9 308.0 122.2
9 723.3 373.4 0.5 341.9 136.2
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 Table 4: Internal camera parameters. Initial values given
by method 1b.

Cam.

Focal
length [pixels]

X Y

Skew
facto

r

Principal point
[pixels]

1 683.9 354.4 0.0 379.8 128.8
2 689.6 357.3 0.0 322.6 135.1
3 669.2 346.7 0.0 260.1 138.8
4 699.2 362.3 0.0 343.8 138.2
5 695.2 360.2 0.0 368.4 141.0
6 709.1 367.4 0.0 391.6 140.2
7 640.2 331.7 0.0 312.7 172.4
8 688.8 356.9 0.0 362.5 131.4
9 676.5 350.5 0.0 357.2 143.9

Table 5: Internal camera parameters. Initial values given
by method 2a.

Cam.

Focal
length [pixels]

X Y

Skew
facto

r

Principal point
[pixels]

1 702.2 360.0 10.1 354.6 118.8
2 769.1 401.0 3.2 303.5 137.6
3 725.0 373.6 5.3 249.4 165.2
4 729.2 376.7 1.2 360.0 132.0
5 793.0 406.9 21.0 331.1 123.5
6 709.5 371.1 16.6 382.6 139.3
7 717.5 371.1 0.8 229.2 122.7
8 747.2 386.6 5.2 327.0 128.7
9 805.4 415.7 14.6 309.6 136.9

Table 6: Internal camera parameters. Initial values given
by method 2b.

Cam.

Focal
length [pixels]

X Y

Skew
facto

r

Principal point
[pixels]

1 681.1 351.9 1.4 360.2 138.5
2 626.6 323.1 2.5 376.8 151.3
3 728.4 383.6 7.6 316.5 140.1
4 784.6 408.5 8.2 245.8 154.1
5 704.5 364.1 4.5 371.6 132.7
6 695.9 363.6 1.8 360.0 125.8
7 721.6 381.1 16.9 318.0 80.9
8 692.9 362.1 8.9 347.9 106.8
9 781.0 407.3 6.0 226.5 136.2

Common  to  all  proposed  methods  is  that  initial
estimates are closer to Smart's refined values (Table 2)
than Smart initial’s ones (Table 1).  The superiority of
method  1a  is  demonstrated  by  the  3D  reconstruction
accuracy  of  wand  lengths  (Table  7),  using  a  linear
camera  model  for  different  camera pairs  (36  possible
pairs  for  9  cameras).  Table  7 shows  that  the
reconstruction accuracy of  method  1a  is  basically the

same as the one using Smart's refined results (3rd and
4th column in Table 7).Besides let us bear in mind that
Smart’s refined projection matrices are optimized on the
external parameters as well, which is definitely not the
case for the shown algorithm (optimization of proposed
methods  is  part  of future work)  and shown results  of
method 1a.

Table  7: Mean error [mm] between reconstructed and
true  wand  lengths;  SI using  Smart’s  initial  data;  SF
using Smart’s final optimized data;  1a,  1b,  2a and  2b
using method 1a, 1b, 2a and 2b respectively.

Pair SI SF 1a 1b 2a 2b
12 29.26 9.54 14.27 11.99 6.68 32.43

13 15.97 7.74 10.36 7.33 13.05 5.16

14 14.59 6.54 4.53 7.84 10.37 21.68

15 14.01 6.17 5.23 8.03 25.84 4.71

16 19.83 8.81 6.81 6.74 9.43 6.87

17 12.17 10.74 4.20 13.04 17.02 11.17

18 14.03 6.61 5.43 7.57 795.66 6.65

19 13.53 9.45 5.31 10.02 36.37 670.53

23 20.79 6.20 7.73 9.06 15.92 15.85

24 17.36 4.48 4.79 6.72 4.51 15.03

25 18.26 4.38 4.50 8.37 23.46 24.19

26 25.11 6.14 8.75 7.18 5.99 12.08

27 15.45 8.62 4.58 16.80 23.55 15.71

28 17.12 4.47 6.44 7.75 15.20 135.56

29 35.36 6.55 5.37 8.06 634.62 16.68

34 16.20 4.96 3.61 7.20 4.26 9.95

35 38.67 13.40 5.73 11.71 210.52 9.99

36 23.71 6.45 7.72 6.17 12.41 6.54

37 15.29 11.20 11.11 52.41 7.46 6.63

38 15.77 5.43 6.22 9.82 13.50 5.15

39 13.69 5.60 3.65 8.50 33.26 11.22

45 15.62 4.29 5.10 5.94 7.98 13.92

46 24.66 5.86 5.59 8.21 10.66 15.64

47 14.28 7.17 3.57 15.72 4.27 29.03

48 17.74 5.85 6.02 6.67 4.12 19.29

49 12.42 4.68 3.47 7.46 8.26 19.98

56 23.89 5.44 5.15 8.26 10.17 4.32

57 19.00 11.97 5.38 14.68 101.77 17.02

58 14.70 4.45 6.10 7.04 13.18 12.00

59 9.56 4.34 6.67 10.08 9.04 16.56

67 20.03 8.63 4.83 9.16 10.40 17.98

68 23.76 6.93 5.76 7.28 12.03 5.23

69 20.07 5.51 4.21 9.17 31.55 19.32

78 14.42 7.85 5.95 11.12 11.29 10.51

79 11.23 7.86 3.68 9.24 12.22 13.07

89 15.20 4.54 11.80 7.35 6.45 17.16
Aver
age 18.41 6.91 6.10 10.27 60.35

(19.4)1
35.41
(13.8)1

1Mean values considering no shaded cells.

The reconstruction results of method 1b are not as
good as for 1a (4th and 5th column in Table 7), however
they are still better than with Smart’s initial values (2nd
column  of  Table  7).  Methods  2a  and  2b  (last  two
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 columns of Table 7) perform worst among the proposed
methods, primarily since for some camera pairs we end
up  with   projection  matrices  which  yield  practically
unacceptable  reconstruction  accuracy (shaded  cells  in
Table  7).  The  logical  question  emerges  immediately
what  could  be  the  possible  reason  that  method  1a
performs  that  exceptionally  well  compared  to  other
methods?  Through  numerous  system  calibration  and
studying distinct calculation steps of each method it is
believed that the answer to the above question is largely
of  practical  (implementation)  nature.  Namely,  method
1b assumes the calculation of the planar homography H
between  a  plane  in  space,  defined  by  a  pair  of
orthogonal wands, and the image plane. This requires a
minimum of 4 pairs of non collinear points. In practice,
due to  noise,  mainly caused by lens imperfection,  the
computation of H will be less impaired if we have large
number  of  corresponding  point  pairs,  presumably
equally distributed in image planes. 

Unfortunately, in our case neither a large number of
point  pairs  nor  their  equal  distribution  is  possible,
because  to  compute  H we  use  only the  few markers
available  on  our  wands.  Consequently,  the  images  of
circular points computed via H will not provide optimal
sets of constraints for the system that we use to find the
IAC. This issue comes particularly into effect in those
frames where the apparent angle between wands, in the
image plane,  is  small.  Computing with such data  will
have a  particularly bad effect  on the final  results  and
frequently  even  cause  the  IAC  matrix  ωωωω to  not  be
positive  definite  and  therefore  prevent  its  Cholesky
factorization. We have found empirically that for given
Smart’s cameras it proves to be beneficial to exclude all
those frames where the apparent angle between wands in
the  image  plane  is  less  than  80°.  This  rather  strict
threshold causes that we end up with even less usable
calibration data (redundancy) to form the final system of
equations  (1) for the IAC computation.

Different experiments revealed a positive effect if we
enforce during the calculation the conditions of the skew
factor  being  zero  and  of  a  known  aspect  ratio.
Assumptions about knowledge of those two values are
quite justified given the quality of the used cameras. At
first  we  have  tried  out  so-called  soft  constraints  by
adding  two  more  equations  to  the  already  large
overdetermined  equation,  gearing  appropriate  IAC
elements  towards  their  known  value.  As  intuitively
expected, soft constraining did not bring any significant
improvement,  since adding two more equations to the
overdetermined  system  of  several  thousands  of
equations  (solved  by  the  least  squares  method)  can
hardly  do  much  difference.  Alternatively,  one  could
assign different weights to the added equations, but that
has not been tried out yet. Therefore we were left with
the option of hard constraints where the equation system
to  compute  IAC  was  set  up  right  from  the  start  to
accommodate the fact  of skew being zero and known
aspect  ratio.  Hard  constraining  did  bring  an
improvement in accuracy and thus results given for the
method  1b  (Table  4)  explicitly  shows  a  zero  skew
factor.

On the other hand, the desired equal distribution of
points  in  the  image  plane  is  considerably  easier  to
achieve  with  method  1a.  Nevertheless,  even  here  we
face at least two potential problems: the possibility of
the wand being (almost) perpendicular or parallel to the
image plane during the imaging. Both problems backed
up with image noise can seriously draw the solution in
the wrong direction.  The first  occurrence is  relatively
easy  to  threshold  out  simply  by  discarding  all  those
frames where the distance between wand end markers is
less  than  some  value.  Similarly,  the  second  problem
could be taken care of by neglecting all  those frames
where the magnitude of vanishing points is larger than
some value. However, in this case we have undertaken
another strategy. The calculation starts by first including
vanishing points around the image center and gradually
considers more and more data around the image center
in the calculation. For each given set of vanishing points
data we end up eventually with one set of IAC matrices,
i.e. the cameras' internal parameters. How to resolve the
ambiguity which one to chose? Let us recall the fact that
working with good quality cameras it  is reasonable to
assume a zero value for the skew parameter. Therefore
we  chose  the  set  of  internal  parameters  that  has  the
smallest computed skew parameter, justifiably expecting
that this set is very close to the true parameter values. At
least  close  enough  that  an  appropriate  optimization
routine,  using  the  chosen  set  as  initial  one,  would
ultimately bring us to true values.

Methods 2a and 2b have a common feature: one of
the  calculation  steps  requires  a  3D  projective
reconstruction based on a pair of canonical projection
matrices, derived from the fundamental matrix. It can be
shown  that  the  pair  of  projection  matrices  uniquely
determine the fundamental matrix. Unfortunately, for a
given fundamental matrix we can find various pairs of
projection  matrices  all  corresponding  to  the  same
fundamental  one.  Various  pairs  of  camera  projection
matrices  represent  various  projective  reconstructions
which differ among themselves by the unknown spatial
transformation  H.  Just  as  a  reminder  we  are  usually
interested  in  finding  pairs  of  projection  matrices  that
correspond to a Euclidean reconstruction. Since solely
based on the fundamental matrix, we cannot accomplish
that  aim directly and it  is customary to  start with the
mentioned  canonical  pair  of  projection  matrices.  In
practice,  it  means that according to  (2)  we choose an
arbitrary vector  v and scalar �. In accordance with the
above mentioned statements different choices for (v, �)
will yield different projection matrices, all leading to the
same fundamental  one.  In  this  paper  we  have  chosen
unity values for components of vector  v and scalar �.
The  obtained  pair  of  projection  matrices  has  made
possible, in accordance with specifically proposed steps
of the methods 2a and 2b, to obtain a metric (Euclidean)
reconstruction of space (last two columns of Table 7)).
However, experimenting with different values for (v, λ)
in (2) gave different reconstruction errors for the same
camera pair. That is quite expectable since for different
(v,  λ)  we  are  starting  our  way  to  Euclidean
reconstruction  from  different  3D  projective
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 reconstructions. And in the presence of noise, evidently,
an error of computing spatial transformation H, that will
enable us transformation form projective to Euclidean,
depends on the chosen (v, λ). This dependency certainly
does not go in favor of either method 2a or 2b. Unless
perhaps we can find out such values for (v,  λ) that will
minimize the error of computing transformation  H, i.e.
error of the Euclidean reconstruction (last two columns
of  Table 7).  Existence analysis of such pair (v,  λ) has
been left for the future work. The transformation from
projective to Euclidean space is equivalent to finding a
pair  of  projection  matrices  that  corresponds  to  a
Euclidean reconstruction. The internal parameters found
using  methods  2a  and  2b  (Table  5 Table  6)  are
computed in a manner that for every camera we have
decomposed such projection matrix (reconstruction pair
member)  which  contributed  to  wand  length
reconstruction  with  the  smallest  mean  error.  For
instance,  to  find  the  first  camera's  parameters  using
method 2b, camera pair 15 was considered (fifth row in
last column of  Table 7). That is in agreement with the
reasoning where a 3D reconstruction with smallest error
should resemble camera parameter values closest to the
true ones.

It  has  been demonstrated  that  certain  thresholding
has  positive  effect  on  methods  1a  and  1b
implementations. Similar  approach has been tried also
for other two methods 2a and 2b. For example, in case
of  method  2a  it  would  be  perhaps  beneficial  to  do
thresholding using angles between lines and/or planes in
space before actual formation of system of equation to
compute  absolute  dual  quadric.  However,  since  the
space  we  start  with  to  form  mentioned  system  of
equation  is  of  projective  character  using  such  metric
information as threshold is not meaningful. Furthermore,
considering  that  image  distortion  is  one  of  the  most
serious  obstacles  for  successful  implementation  we
could take into calculation only those image points of
certain  planes  in  space  which  lie  around  the  image
center. The drawback of this potential idea is that is not
easy to  come up with enough number  of such frames
where image points of some plane in space are around
image center of both cameras. Therefore, it appears that
only thresholding left  is  to  exclude  those  data  where
image distance between end markers are not greater then
some values. Although this strategy could be applied for
the either of the proposed methods. Evidently in case of
method 2a such thresholding is not as efficient as similar
thresholding  for  some  other  methods.  For  instance  in
case  of  method  1a,  gradual  consideration  of  larger
number of vanishing points and using the magnitude of
skew  factor.  In  case  of  method  2b  situation  with
thresholding is slightly better then with method 2a. Here
we  are  capable  to  discard  all  those  vanishing  points
whose coordinates are of larger value (in all likelihood
wand in space is almost parallel to image plane). That
surely  guaranties  more  accurate  computation  of  3D
affine  space  (in  accordance  with  proposed  method
steps),  which explains why results  of method 2b (last
row of  Table 7) are better then results of method 2a
(row before the last one in Table 7). One more thing that

methods 2a and 2b have in common is they in essence
calibrate  two  cameras  at  the  same  time,  indirectly
through reconstruction (computation)  of 3D Euclidean
space.  Let  us  remind  ourselves  that  accuracy  of  3D
reconstruction  depends  also  on  cameras  spatial
configuration (angle between optical axes,  ratio of the
base  line  and  depth  of  the  points  etc.).  Naturally  we
obtain for  the  same camera,  but  paired with  different
others,  very different reconstruction errors, even up to
the hardly expectable magnitudes (shaded cells in Table
7).  For  completeness  lets  just  say  that  all  proposed
methods  work equally well  with  synthetic  data  (noise
free)  outputting  perfectly  accurate  results  in  terms  of
camera parameters and reconstructions as well. It simply
proves  its  correct  theoretical  foundation  explained  in
preceding section.

Conclusion

We  have  taken  theoretically  known  methods  for
camera calibration 3] and investigated their applicability
in  practice  in  case  of  typical  3D  kinematic  systems.
Using commonly present calibration tools of many 3D
kinematic  systems  an  idea  was  proposed  to  perform
wand dance with two (three) orthogonal wands instead
of a single one. Such a configuration allowed us to use a
number  of  well  known  projective  geometry  entities.
Specifically,  we  have  showed  four  possible  methods
which  can  give  us  more  accurate  and  reliable  initial
camera  parameter  estimates,  assuring  faster  and  saver
convergence and  most  likely better  accuracy after  the
refinement (future  work).  Besides,  using either  of  the
proposed  methods  two  typical  phases  of  calibration
(imaging the orthogonal triad of wands before the wand
dance) successfully boil down to single one – only the
wand dance. In some instances parameter refinement is
not  necessary.  Even  without  refinement,  our  initial
values  give  better  reconstruction  results  (tested  on
reconstruction  of  known  lengths)  than  using  Smart's
initials.  Among  the  proposed  methods  and  without
consideration of a refinement, method 1a appears to be
the method of choice. 
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