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Abstract: The retrieval of similar medical images 
from a database of digital images with a known 
symptom outcome can be very useful for a better 
assessment of disease and treatment. In high-
resolution ultrasound imaging of atherosclerotic 
carotid plaques the extraction of features 
characterizing the plaque morphology and structure 
can be used for the retrieval of similar plaques and 
the identification of individuals with asymptomatic 
carotid stenosis at risk of stroke. In this work a 
content-based image retrieval system is implemented 
using texture, histogram, shape and correlogram 
features and the SOM neural and the KNN statistical 
classifiers reaching a correct retrieval rate of 73%. 
 
Introduction 
 

The huge amount of medical and other digital 
images made available in the recent days necessitate 
content-based image retrieval (CBIR) systems in order 
to effectively and efficiently use the information that is 
intrinsically stored in these image databases. A critical 
step for achieving this goal is the automated extraction 
of features characterizing the image. There was a lot of 
work in the last years for the construction of CBIR 
systems [1], [2]. In [3] Nezamabadi-pour and Kabir 
used histogram for image retrieval whereas in [4] 
Laaksonen et al used the SOM classifier and different 
feature distributions for comparing different classes and 
different feature representations of the data in the 
context of the PicSOM CBIR system. In a recent work, 
Amores and Radeva [2] present a CBIR system for 
intravascular ultrasound images using a generalization 
of correlograms in order to extract local, global and 
contextual image features. 

The objective of this work was to develop a CBIR 
system that will facilitate the automated retrieval of 
similar carotid plaque ultrasound images based on the 
following features: (i) texture, (ii) histogram, (iii) shape, 
(iv) correlogram. The aim was to identify plaque images 
with similar structure and based on their clinical history 
and known symptoms to decide the course of treatment 
for the test plaque/subject. The ultimate task was to 
identify individuals with asymptomatic carotid stenosis 
at risk of stroke [5]. Stroke is the third leading cause of 
death in the western world and the major cause of 
disability in adults. 

Material  
 

Ultrasound scans of carotid plaques were performed 
using duplex scanning and color flow imaging. A total 
of 230 carotid plaque ultrasound images (115 
symptomatic and 115 asymptomatic) obtained from 209 
subjects, were analysed. For training the system 80 
symptomatic and 80 asymptomatic plaques were used, 
whereas for evaluation of the system the remaining 35 
symptomatic and 35 asymptomatic plaques were used. 
The carotid plaques were labeled as symptomatic after 
one of the following symptoms was identified: Stroke, 
Transient Ischemic Attack  or Amaurosis Fugax. 
 
Feature Extraction 
 

The following texture (i-viii) [6]-[11], histogram (ix) 
shape (x), and correlogram (xi) [2] feature sets were 
extracted from the segmented plaque images:  

(i) Statistical Features (SF): The following 
statistical features were computed: 1) Mean value, 2) 
Median value, 3) Standard Deviation, 4) Skewness, and 
5) Kurtosis.  

(ii) Spatial Gray Level Dependence Matrices 
(SGLDM): The spatial gray level dependence matrices 
as proposed by Haralick et al. [6] are based on the 
estimation of the second-order joint conditional 
probability density functions that two pixels (k,l) and 
(m,n) with distance d in direction specified by the angle 
θ, have intensities of gray level i and gray level j. Based 
on the probability density functions the following 
texture measures [6] were computed: 1) Angular second 
moment, 2) Contrast, 3) Correlation, 4) Sum of squares: 
variance, 5) Inverse difference moment, 6) Sum 
average, 7) Sum variance, 8) Sum entropy, 9) Entropy, 
10) Difference variance, 11) Difference entropy, and 
12), 13) Information measures of correlation. For a 
chosen distance d  (in this work d=1 was used, i.e. 3x3 
matrices) and for angles θ = 0o, 45o, 90o and 135o we 
computed four values for each of the above 13 texture 
measures. In this work, the mean and the range of these 
four values were computed for each feature, and they 
were used as two different feature sets.  

(iii) Gray Level Difference Statistics (GLDS): The 
GLDS algorithm [7] uses first order statistics of local 
property values based on absolute differences between 
pairs of gray levels or of average gray levels in order to 
extract the following texture measures: 1) Homogeneity 
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 2) Contrast, 3) Angular second moment, 4) Entropy, and 
5) Mean. The above features were calculated for 
displacements δ = (0, d), (d, d), (d, 0), (d, -d), where δ ≡ 
(∆x,∆y), and their mean values were taken. In this work 
the parameter d=1 was used. 

(iv) Neighborhood Gray Tone Difference Matrix 
(NGTDM):Amadasun and King [8] proposed the 
Neighborhood Gray Tone Difference Matrix in order to 
extract textural features, which correspond to visual 
properties of texture. The following features were 
extracted, for a neighborhood size of (2d+1)x(2d+1) 
where d=1 was chosen: 1) Coarseness, 2) Contrast, 3) 
Busyness, 4) Complexity, and 5) Strength.  

(v) Statistical Feature Matrix (SFM): The statistical 
feature matrix [9] measures the statistical properties of 
pixel pairs at several distances within an image, which 
are used for statistical analysis. Based on the SFM the 
following texture features were computed: 1) 
Coarseness, 2) Contrast, 3) Periodicity, and 4) 
Roughness. The constants Lr, Lc which determine the 
maximum intersample spacing distance were set 
Lr=Lc=4. 

(vi) Laws Texture Energy Measures (TEM): For the 
Laws TEM extraction [10], [11], vectors of length l=7, 
L=(1, 6, 15, 20, 15, 6, 1), E=(-1,-4,-5, 0, 5, 4, 1) and 
S=(-1,-2, 1, 4, 1,-2,-1) were used, where L performs 
local averaging, E acts as edge detector and S acts as 
spot detector. If we multiply the column vectors of 
length l by row vectors of the same length, we obtain 
Laws lxl masks. In order to extract texture features from 
an image, these masks are convoluted with the image 
and the statistics (e.g. energy) of the resulting image are 
used to describe texture. The following texture features 
were extracted: 1) LL - texture energy from LL kernel, 
2) EE - texture energy from EE kernel, 3) SS - texture 
energy from SS kernel, 4) LE - average texture energy 
from LE and EL kernels, 5) ES - average texture energy 
from ES and SE kernels, and 6) LS - average texture 
energy from LS and SL kernels. 

(vii) Fractal Dimension Texture Analysis (FDTA): 
The Hurst coefficient H(k) [11] was computed for image 
resolutions k=1, 2, 3. A smooth surface is described by a 
large value of the parameter H whereas the reverse 
applies for a rough surface. 

(viii) Fourier Power Spectrum (FPS): The radial 
sum and the angular sum of the discrete Fourier 
transform [11] were computed in order to describe 
texture. 

(ix) Histogram: The histogram of the plaque images 
was computed for 30 equal width bins and was used as a 
second feature set. Histogram despite its simplicity 
provides a good description of the plaque structure. 

(x) Shape: The following shape features were 
calculated from the plaque images: 1) X - coordinate 
maximum length, 2) Y - coordinate maximum length, 3) 
Area, 4) Perimeter, and 5) Perimeter2/Area. The idea 
was to investigate whether the size and complexity of 
the shape of the segmented plaque had any diagnostic 
value. 

(xi) Correlogram: Correlograms are histograms 
which measure not only statistics about the features of 
the image, but also take into account the spatial 
distribution of these features [2]. The proposed 
correlogram implemented in this work was calculated as 
the distribution of the pixels’ gray level values from the 
center of the image. For each pixel the distance from the 
image center was calculated and for all pixels with the 
same distance their histograms were computed. In order 
to make the comparison between images of different 
sizes feasible, the correlograms were normalized into 30 
possible distances from the center by dividing the 
calculated distances with maximum_distance/30. The 
resulting correlograms were matrices 30x253 (gray level 
values over 253 were set to be the white area 
surrounding the region of interest and were not consider 
for the calculation of the features). 

 The texture and the shape features were normalized 
before use by subtracting their mean value and dividing 
with their standard deviation whereas the histogram and 
correlogram features were used with their original 
values.  

 
Image Classification / Retrieval  

 
For the retrieval of similar plaque images the neural 

self-organizing feature map (SOM) classifier and the 
statistical K-nearest neighbor (KNN) classifier were 
used. 

(i) The SOM Classifier: The SOM was chosen 
because it is an unsupervised learning algorithm where 
the input patterns are freely distributed over the output 
node matrix [12]. The weights are adapted without 
supervision in such a way, so that the density 
distribution of the input data is preserved and 
represented on the output nodes. This mapping of 
similar input patterns to output nodes, which are close to 
each other, represents a discretisation of the input space, 
allowing a visualization of the distribution of the input 
data. The output nodes are usually ordered in a two 
dimensional grid and at the end of the training phase, the 
output nodes are labeled with the class of the majority 
of the input patterns of the training set, assigned to each 
node.  
 In the evaluation phase, a new input pattern was 
assigned to the winning output node with the weight 
vector closest to the new input vector. In order to 
classify the new input pattern, the majority of the labels 
of the output nodes in an RxR neighborhood window 
centered at the winning node, were considered. The 
number of the input patterns in the neighborhood 
window for the two classes m={1, 2}, (1=symptomatic, 
2=asymptomatic), was computed as: 
 
    ∑

=

=
L

i
miim NWSN

1

     (1) 

 
where L is the number of the output nodes in the RxR 
neighborhood window with L=R2 (e.g. L=9 using a 3x3 
window), and Nmi is the number of the training patterns 
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 of the class m assigned to the output node i. Wi=1/(2 di), 
is a weighting factor based on the distance di of the 
output node i to the winning output node. Wi gives the 
output nodes near to the winning output node a greater 
weight than the ones farther away (e.g. in a 3x3 
window, for the winning node Wi =1, for the four nodes 
perpendicular to the winning node Wi =0.5 and for the 
four nodes diagonally located Wi =0.3536, etc). The 
evaluation input pattern was classified to the class m of 
the SNm  with the greatest value, as symptomatic or 
asymptomatic. 
 (ii) The KNN Classifier: The statistical k-nearest 
neighbor (KNN) classifier [13] was also used for the 
classification of the carotid plaques. In the KNN 
algorithm, in order to classify a new input pattern, its k 
nearest neighbors from the training set are identified. 
The new pattern is classified to the most frequent class 
among its neighbors based on a similarity measure that 
is usually the Euclidean distance. In this work the KNN 
carotid plaque classification system was implemented 
for different values of k and it was tested using for input 
the different feature sets.  

For the SOM CBIR system, the retrieved images 
were assigned to the same output node with the test 
plaque or in the neighborhood of the winning node in 
the case that no plaques were assigned to the winning 
node. In the KNN system the k most similar images 
using the Euclidean distance as the similarity measure 
were retrieved. The evaluation of how successful was 
the retrieval, was based on the classification of the 
retrieved plaques into two types: (i) symptomatic, or (ii) 
asymptomatic. If the type of the reference test plaque 
was the same with the type of the majority of the 
retrieved images, then the retrieval was considered 
successful.   
 
Results 
 
Table 1 tabulates the success rates of correct retrievals 
for all cases. 
 
Table 1: The success rate of correct retrievals in % for 
the SOM and KNN CBIR systems, using as input: (i) 
the texture, (ii) histogram, (iii) shape feature sets, (iv) 
the above three feature sets combined, (v) the 
correlogram features. For the SOM a 10x10 matrix was 
used whereas for the KNN the results for k=5 are given.  
 
Feature set SOM KNN Average 

Texture 68.1 70.0 69.1 
Histogram 69.5 67.1 68.3 

Shape 61.4 58.6 60.0 
Combined 70.0 72.9 71.5 

    
Correlogram 67.1 70.0 68.6 

    
Average 67.2 67.7 67.5 

 
Using the 56 extracted texture features as input 

vector yielded about 68.1% correct retrievals for the 

SOM CBIR system with a SOM 10x10 output nodes 
architecture, whereas the KNN yielded 70.0% with k=5. 
Using as input the histogram of the image with 30 bins 
yielded 69.5% correct retrievals for the SOM and 67.1% 
for the KNN respectively. The shape parameters 
performed worse with 61.4% correct retrievals for the 
SOM and 58.6% for the KNN system. Furthermore all 
the above 91 features were combined and used as one 
input vector to the classifiers. In this case the histogram 
parameters were also normalized by subtracting their 
mean value and dividing with their standard deviation. 
Using all 91 features combined slightly improved the 
percentage of correct retrievals for the SOM system up 
to 70.0% and for the KNN up to 72.9%. The 
correlogram features performed also well and gave 
results comparable to the texture and histogram features, 
with 67.1% correct retrievals for the SOM and 70.0% 
for the KNN system. The correlogram features were not 
combined with the other features due to their large 
vector size (30x253=7590). 

In Figure 1 an example is given with the five more 
similar plaques to the reference plaque shown at the top 
left side of the figure. Below each plaque its label as 
symptomatic or asymptomatic is given. In Figure 1 the 
SOM classifier was used with the 56 texture features 
used as input. As seen from the labels of the retrieved 
images, 4 out 5 of the retrieved images are labeled as 
symptomatic and their label coincides with the label of 
the reference plaque. Figures 2 and 3 show the retrieved 
images for the same reference plaque using the SOM 
with the histogram and the shape features. Figures 4, 5, 
and 6 illustrate the same example using the KNN 
classifier and the texture, histogram and the shape 
features respectively. Figure 7 shows the retrieved 
plaques when all 91 features were used combined as one 
input vector with the SOM classifier, whereas figure 8 
shows the same example with the KNN classifier. 
Figure 9 shows the correlogram for the reference image 
and figures 10 and 11 show the retrieved images using 
as input the correlogram features for the SOM and the 
KNN classifiers respectively. 
 

 
 
Figure 1: Image retrieval using the SOM classifier and 
the texture features 
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Figure 2: Image retrieval using the SOM classifier and 
the histogram parameters 
 
 

 
Figure 3: Image retrieval using the SOM classifier and 
the shape parameters 
 
 

 
 
Figure 4: Image retrieval using the KNN classifier and 
the texture features 
 
 

 
 
Figure 5: Image retrieval using the KNN classifier and 
the histogram parameters 
 
 

 
 
Figure 6: Image retrieval using the KNN classifier and 
the shape parameters 
 
 

 
 
Figure 7: Image retrieval using the SOM classifier and 
all features combined 
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Figure 8: Image retrieval using the KNN classifier and 
all features combined 
 

 
Figure 9: The correlogram matrix 30x253 of the 
reference image 490.gif  
 
 

 
Figure 10: Image retrieval using the SOM classifier and 
the correlogram features 
 
 

 
Figure 11: Image retrieval using the KNN classifier and 
the correlogram features 

Concluding Remarks 
 

In this work an image retrieval system for carotid 
plaque ultrasound images is presented using as input 
texture, histogram and shape features, based on the 
neural SOM and the statistical KNN classifiers. Best 
feature results were obtained when using the texture 
features with an average percentage of correct retrievals 
for both systems of 69.1%, followed closely by the 
correlogram and the histogram features with 68.6% and 
68.3%. The simple shape features computed, based on 
the dimensions and the area of the plaque, performed 
worse and provided an average correct retrievals rate of 
60.0% for both systems. When the texture, shape and 
histogram were combined the success rate was 
increased to 71.5% in average. Best individual result 
was obtained by the KNN CBIR system with the 
combined features as input, with 72.9% correct 
retrievals.  

The performance of the KNN and the SOM 
classifiers was very similar. However the simpler 
statistical KNN classifier made it easier to track back 
and repeat the results than the more complex neural 
SOM classifier, which required separate training and 
evaluation phases. 
 Feature work will focus in developing an automated 
CBIR system, which through a user-friendly interface 
will provide to the physician not only the label of the 
retrieved plaques but also all the information about the 
original ultrasound images, the clinical data and the 
history of the similar cases. This will help the physician 
to decide the course of treatment and may spare patients 
from an unnecessary endarterectomy. 

In conclusion the results in this work show that 
content-based image retrieval for carotid plaque images 
is feasible and that texture, correlogram and histogram 
features can be used successfully for the identification 
of cases with similar symptoms output.  
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