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Abstract: In this paper several models are 
presented for microcirculation. A comprehensive 
continuum approach is proposed in which fluid 
structure interaction has been taken into account. 
Based on limitations imposed by computational 
resources, a more simplified model based on volume 
of fluid approach is suggested to simulate 
movements of RBCs from an arteriole to a venule 
via a capillary. The results show that no RBCs can 
enter the microvessels in the absence of chemical 
components such as nitric oxide (NO), which 
functions as a vasodilator. This observation 
supports the hypothesis suggested by Singel and 
Stamler (Nature, 2004, p. 297).    
 
Introduction 
 
   Human blood is a suspension of cells with various 
shapes, deformabilities, and electric charge densities in 
a complex suspending medium (plasma). Hence, it may 
be anticipated that deformation and flow of blood 
should be similar to that of a suspension of deformable, 
aggregable particles [1]. 
   The composition of the suspending cells such as 
erythocytes, leukocytes, and platelets can vary 
extensively. The suspending fluid (plasma) is usually a 
Newtonian [1] aqueous solution. However, the general 
rheological behavior of erythocytes (RBC) is a strong 
function of the rate of deformation.  The cell interior is 
a concentrated solution of oxygen-binding protein 
hemoglobin which behaves as an incompressible fluid 
whose viscosity is higher than that of plasma [2].  
   The blood circulation involves flows through 
networks of tubes with diameters ranging from 1cm  
down to a few mµ , driven by the pumping action of 
the heart [3]. The RBC-plasma suspension (blood) can 
be considered to be Newtonian at shear rates 

above 11000 s− . Note that high shear rate flows occur 
in channels with a characteristic diameter of 400 mµ . 
In smaller channels, effects such as migration of RBCs 
transverse to the main flow could play a key role in 
flow dynamics. In fact, if aggregation does occur the 
secondary processes such as sedimentation and 
syneresis could become the rate-limiting mechanisms. 
In this light, a simple continuum model is not 
satisfactory for vessels with diameters well 
below 400 mµ such as microvessels [1].  

   The analysis of blood flow in microcirculation 
requires the combining of fluid dynamics and solid 
mechanics. Here, it is likely that cell-cell interactions 
as well as the effect of walls are controlling the blood 
flow dynamics. Note that microcirculation blood flow 
is precisely matched to metabolic requirements. In fact, 
hemoglobin molecules release the oxygen via 
microcirculation where due to low aqueous solubility 
of oxygen, it can diffuse through a short distance into  
oxygen-consuming tissues; typically of order 
20 100 mµ−  [3].  
   It is known that microcirculation flow dynamics is 
significantly affected by arrangement, orientation and 
deformability of RBCs in plasma suspension [3]. The 
deformation of RBCs involves area dilation or 
condensation, surface shear, and bending or curvature 
changes [4]. The deformation of a cell membrane 
whose thickness could be as small as 5 nm  is modeled 
using a viscoelastic Kelvin model for which the 
viscous component represents the fluid-like behavior of 
the lipid bilayer, and the elastic component arises from 
the stretching of the cytoskeleton [5].  Note that the 
resistance to bending of cell membranes is relatively 
small [2]. However, bending moments become 
significant when the membrane curvature is large. In 
this case, the rheological behavior of erythocytes 
(RBC) should be a strong function of the rate of 
deformation.   
   Most of proposed models for blood flow in small 
vessels rely on two key simplifying assumptions. They 
are; the axisymmetric motion of red blood cells in 
capillaries, as well as the description of the flow of 
plasma between the cell and the wall using lubrication 
theory [3]. 
   Recall that microcirculation blood flow is controlled 
by metabolic requirements. For example, a decrease in 
the oxygen content of blood (caused by increasing 
muscle activity) stimulates an increase in blood flow. 
On the other hand, blood flow decreases when the 
tissue oxygen consumption is reduced [6]. An 
important question remains concerning the 
hydrodynamic conditions at which RBCs from 
arterioles can enter microvessels in order to match to 
metabolic requirements. Indeed, the blood flow 
dynamics in branching has not been extensively 
explored. 
   Singel and Stamler [6] highlighted the role for the 
vasodilator nitric oxide (NO) in local modulation of the 
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 diameter of small vessels in arterial blood flow. 
However, there is considerable debate over whether 
components such as NO could control blood traffic.  
This should open a new field of investigation including 
modeling of blood microcirculation, which requires 
considerations of the overall, NO biochemistry. 
   In this paper the question will be addressed of the 
effects of the flow dynamics in arterioles on RBCs 
approaching the microvessels.  
   The organization of the paper is as follows. In section 
II, a detailed overview is presented of modeling based 
on continuum type approach in blood flows useful for 
developing a simplified model for molecular dynamic 
type simulations of microcirculation. In section III, the 
developed model is applied to the specific example of 
flow in a branching where the blood is transferred from 
an arteriole to a venule via a capillary. Finally, the 
concluding remarks are presented in section IV, which 
may provide a correct methodology and a mathematical 
and numerical framework for the simulation of blood 
flows in microcirculation. 
     
Continuum Type Approach 
 
   The nature of the blood flow within small vessels is 
important in determining its behavior, particularly 
since a key parameter in a suspension of deformable, 
aggregable particles such as blood is shear stress, 
which is determined by the flow field. In fact, cell 
biomechanics and blood flow include processes 
involving a broad range of length scales [3]. Note that 
the adhesion of a RBC to the wall of vessel as 
illustrated in Fig. 1 involves the deformation of the cell 
whose length is of the order of micrometer. However, 
the adhesion bonds between the RBC and wall could be 
on the order of the nanometers. 
 

    
Figure 1: Interaction of an RBC and the wall of a 
capillary. The RBC is color coded by the local value of 
the effective stress magnitude.  
 
   In this light, the numerical modeling of 
microcirculation requires an accurate description of the 
cell adhesion by incorporating molecular and cellular 
information. In addition, any useful model of blood 
flow must account for the small vessels and the 
presence of cells and receptors in the capillary.  
 Indeed, the description of local phenomena such as 
cell adhesion and blood flow in microcirculation may 
be more accurately addressed by means of three-
dimensional (3D) simulations, based on a multi-scale 

modeling approach. In these simulations the 
specification of boundary data is critical.  
  Note that cell adhesion involves receptors, cells, and 
vessels with a broad range of length scales from the 
order of nm  and mµ . The RBC membrane, which is a 
composite of the plasma membrane and the 
cytoskeletal network, is heterogeneous at the length 
scale of individual lipid molecules. Hence, it is of 
interest to use a discrete model for which space is 
divided into a lattice of points to describe the 
movement of a single cell. In fact, the models such as 
cellular large-Q Potts model [7] may be a useful 
technique for cell level simulation of tissues. This 
becomes more attractive if a continuous model can be 
developed to give rise to similar solutions as those 
obtained by the discrete model at length scales where 
their range of applicability overlap. This may provide 
insights into how discrete models can be used as a 
basis for the development of their continuous 
equivalents.      
 In the present study, the processes are considered on 
the scales longer than 100 nm  where the membrane 
may be homogenous in its properties. Knowledge of 
the cell membrane mechanics including membrane 
elasticity and membrane shear viscosity may be 
obtained by analyzing a system, as shown in Fig. 2. 
Figure 2 illustrates cell membrane buckling and cell 
folding in numerical type experiments of micropipette 
aspiration which can be used to develop a reliable 
model for the red blood cell membrane.  
 

 
 
Figure 2: (a) The schematic of micropipette with some 
nomenclatures. Here, the vesicle diameter is 20 µm  
and pipette caliber is 8 µm . (b) The variations of 
vesicle’s shape with increasing suction pressure.    
 
   Recall that the problem of micropipette aspiration is 
concerned with the structures such as cell membranes 
with the thickness of 5 nm. The overall scale of the 
vesicle denoted by vR , as illustrated in Fig. 3, is much 
larger than the thickness of the cell membrane. Many 
important features are involved, such as membrane-
micropipette interactions, as well as membrane 
performance properties. 
   Using classical thin-shell theory the general 
equations of motion in referential coordinates for a 
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 viscoelastic RBC membrane in absence of body forces 
may be given as [8]. 

, ,i ij juρ τ=&&  (1) 
The displacements in a global rectangular Cartesian 
coordinate system ( )1, 2,3jX j =  are denoted by 

( ), ti i i i ju x X u X= − =  with kinematical relations 

( )2
, ti i ju t x X= ∂ ∂&& .  Equation (1) with constitutive 

equation for surface tension tensor 

( ) ( ) ( ) 2ij ij i j s s ij i j s ijn n n n Eτ γ δ µ µ θ δ µ′= − + − − +  

and geometric equations 
( ) ( ) ( ), ,1 2 ik i k jl j l k l l kijE n n n n u uδ δ= − − + , provide 

equations for the unknowns comprising stresses ijσ , 

six strains ijE , and displacements iu . Here, γ  is the 

isotropic tension, θ  is the rate of surface dilatation 

defined as ( ) ,ij i j j i
un nθ δ= − , n  is the unit normal 

vector for the interface, sµ′  and sµ  are two constants 
expressing the interface shear and dilatational 
viscosity.     
The set of equations given above has to be solved for 
appropriate boundary and initial conditions listed 
below: 
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where iT  is traction loads vector. 
 The second condition in (2) represents the contact 
discontinuity given along an interior boundary 2b∂  

when i ix x+ −= . 
   The Galerkin formulation may be obtained from (1) 
and (2) by using the Gauss theorem. That is 
 

,
1

0.i i b ij i j b i i b
b b

W u u dV u dV T u dS
V V b

δ ρ δ σ δ δ= + − =∫ ∫ ∫
∂

&&

  (3) 
This equation is the weak form of the equilibrium 
equations, and the load transfer occurs via boundary 
conditions (2). Note that no slip boundary condition is 
assumed for the fluid phase at the solid boundaries. 
Spatial discretization in numerical analyses such as 
binary collision of spheres could be typically based on 
a single method such as Lagrange, Euler, a mixture of 
Lagrange and Euler (Arbitrary Lagrange Euler), or 
meshfree Lagrangian (Smooth Particle 
Hydrodynamics). For the numerical simulation of the 
micropipette aspiration, each of the different solutions 

mentioned above has unique advantages and there is no 
single ideal numerical method which would be 
appropriate to the various regimes of a contact. The 
physical properties of micropipette are the elastic 
modulus, 106.3 10   PaE = × , density, 

32500 kg mρ = , and Poisson’s ratio, 0.244ν = .  
 In the present study, the Lagrange method of space 
discretization is used for which the numerical grid 
moves and deforms with the material.  

 
Figure 3: Schematic of vesicle pressurization and some 
nomenclature. (b) Numerical results of membrane 
tension and fractional area dilation for a system as 
shown in Figure 2. 
 
   Using the physical properties of a polymer 
membrane, the results for membrane tension as a 
function of fractional area dilation are obtained using 
the numerical method discussed earlier. Figure 3 (b) 
illustrates numerical results of membrane tension and 
fractional area dilation for a vesicle pressurized in a 
system as depicted in Fig. 2. Note that at high-tension 
regime, the slope of the tension versus area dilation 
approaches the direct elastic expansion modulus of the 
membrane. The results presented in Fig. 3 (a) are in 
qualitative agreement with those predicted using the 
simplified theory developed by Evans and Rawicz [9] 
for tension and bending elasticity in viscoelastic 
membranes.  
   The model capability is further assessed by 
predicting the deformation of an RBC interacting with 
the vessel wall at a branching of an arteriole and a 
capillary. As illustrated in Fig. 4, cell-wall interaction 
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 could induce localized waves in the wall of the 
arteriole. 
 

 
 
Figure 4: Temporal evolution of deformations in a 
branching. Note that a localized wave can easily be 
seen as a result of cell-wall interactions. Color 
represents the magnitude of tension, where red 
represents highest and blue shows the lowest. Here, no 
elastic behavior for the daughter is assumed whose 
diameter is 6.5 µm . The larger vessel diameter13 µm , 
and the diameter of cell is 8 µm . 
 
   A continuum approach may be employed at the 
cellular level to account for moving boundaries. Figure 
5(a) shows the mesh for a grid used for the simulation 
of RBC flows thorough a small vessel. In addition, Fig. 
5 (b) represents more details of mesh for deformable 
RBCs whose deformation may be expressed by Eq. (1). 
The cell-cell interactions as illustrated in Figs. 5(c)-(d), 
denote the transfer of momentum due to collisions 
among the cells.  
 The numerical solution of incompressible Navier-
Stokes equations accounting for moving boundaries, as 
illustrated in Fig. 5 (e), offers insights for a variety of 
problems including capillary fluid flow and adhesion 
dynamics. The Navier-Stokes equations are as follows: 

,

, , , ,

0

ρ ρ σ ρ δ
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+ = − + −

i i

i t j i j i ij j iy

V
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                  (4) 

where P  is the static pressure , 
ij

σ  is the stress tensor 

and ρ g is the gravitational [13]. Here 
ij
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where µ  is the molecular viscosity.  
   Freely suspended RBCs have the form of biconcave 
disks, about 8 mµ  in diameter and 2 mµ in thickness. 
As the shear rate increases, the shape of the red cells 
changes to an ellipsoid, and then to an elongated 
spindle-like shape with the long axis approximately 
aligned with the flow as illustrated in Fig. 5 (b). Note 
that a dynamic mesh is required to account for changes 
in flow domain according to deformation of RBCs.  
Because of the fluidity of the cell interior and the low 
resistance of the membrane to shear and bending 

deformation, RBCs can easily deform and squeeze 
through capillaries with diameter less than 8 mµ . 
However the deformation is limited by the 
incompressibility of the interior fluid and strong 
resistance of the membrane to area changes. 
 

 
 
Figure 5: (a) The schematic of a suspended RBC in a 
capillary. Here, the vessel diameter and it's length are 
50 µm  and 15 µm .  (b) The deformation of RBC due 
to shear forces. (c-d) Mechanical interactions of red 
blood cells within the terminal vessels and at the 
branching site where the diameter of parent is 12 µm  
and that of daughter is 6.5 µm  slightly smaller than the 
diameter of an RBC, which is 7.5 µm . (e) Velocity 
field of blood through the capillary.  
 
   The computed shapes are convex at the front and 
concave at the rear, in agreement with the experimental 
observation [10]. The predicted cell shape depends on 
the flow velocity [11]. As the velocity is increased, the 
cell contour becomes more streamlined. At high 
velocities, the full system of equations becomes 
increasingly difficult to be solved for a large number of 
RBCs. In this light, the important limitation of the 
scheme described in this section is that only a small 
number of moving particles can be studied using 
numerical methods.   
    
Simplified Model 
 
   As mentioned earlier, the computational costs of the 
models discussed in the preceding section are high. 
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 Hence, the single file motion of deformable RBCs in a 
branching where the blood moves from an arteriole to a 
venule via a capillary is simulated using volume of 
fluid (VOF) model [12]. Modeling of blood flow using 

VOF requires adding an extra term, sv
i

F , to equation 
(4)  to account for the forces due to surface tension. 

That is, 
, , , ,

ρ ρ σ ρ δ ++ = − + − sv
i t j i j i ij j iy i

V V V p g F . In 

this case, there is no need of solid mechanic type 
computations as detailed in Sec. II using Eq. (1). 
 Note that a constitutive equation for the tensor of 
surface tension has been given earlier, namely 

( ) ( ) ( ) 2ij ij i j s s ij i j s ijn n n n Eτ γ δ µ µ θ δ µ′= − + − − + . 

It is straight forward to obtain an expression for the 

volume form of the surface tension force, sv
i

F ,  given 
by [14]   

[ ]
,τ κ= jsv

i ij

F
F

F
                                     (6)  

where [ ]F is the jump in the value of , jF  across the 
interface and κ  represents the curvature of the interface 
defined as 

,
, ,,, ,
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⎛ ⎞
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j
i iiji i

F
F F

F F
.                                  (7) 

   Here the dynamics of blood is studied as a two-phase, 
non-homogeneous fluid consisting of liquid plasma and 
RBCs [13]. It is assumed that plasma is a uniform 
Newtonian- incompressible fluid with physical 

properties 31000 kg mρ = and 366 10 kg m.sµ −= ×  
which flows in the gap between cells and vessel walls, 
and is described by the lubrication theory. So the fluid 
pressure is assumed to be uniform in the gap. The cells 
are composed of hemoglobin and randomly are entered 
the arteriole with physical properties of 

31000 kg mρ = and 1.3 kg msµ = [3].  
   The small arterioles and venules do not necessarily 
have all three tunics.  The tunica media can be 
extremely reduced.  This is shown in Fig. 6, in an 
arteriole.  The tunica externa, in these conditions, is 
also extremely reduced or even absent.  
So the tunica of arteriole and venule in the simplified 
model are not smooth. 
 

 
 
Figure 6: Tunica of an arteriole [3]. Note the absence 
of smooth muscle cells in a capillary.  
 

Figure 7 represents the geometry of the model. A 
regular grid throughout the domain is used, and the 

domain is discretized using 52 10× nodes and 
tetrahedral elements. The advantage of this approach is 
that the mesh does not evolve with time, reducing the 
computational expenses. 
                            

 
 
Figure 7: Geometry of simplified model and vectors 
plot of velocity field of blood through arteriole. Here 
the length of the vessels and RBCs sequently are 
15 mµ and 8 mµ and the thickness of the RBCs is 
2 mµ .   
 
   The constant pressure boundary conditions were 
assumed at the inlet and outlet of arteriole and venule. 
The inlet pressure for arteriole is set to 10 Pascal, 
whereas its outlet pressure is set to 310− Pascal. The 
values of inlet and outlet pressure of the venule are 
given as 5  Pascal and 310−  Pascal, respectively. 
Hence, the RBCs are subjected to the pressure force, 
leading to their compression. These forces, which push 
RBCs to move toward the downstream, cause large 
deformations of RBCs as illustrated in Fig. 7. To obtain 
a better visualization, the RBCs in Fig. 7 are color 
coded with the local value of the strain rate. This may 
be of help in understanding the complex shapes of 
RBCs. Here, a strong vorticity can not be observed at 
the entrance of the capillary by which RBCs are to be 
directed into the capillary. In this light, a more 
generalized model would be required to investigate the 
importance of an appropriate kinetic/thermodynamic 
model for interaction of NO with hemoglobin to 
elucidate the detailed mechanism for oxygen delivery 
under physiological conditions [14].  
   In Fig. 8 an unreasonably high velocity is applied, 
which is two orders of magnitude higher than that used 
in the system as depicted in Fig. 7. The obtained 
results, as illustrated in Fig. 8, revealed that RBCs can 
be pushed into the capillary at high blood flow rates. 
However, it is quite unlikely that the condition as 
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 presented in Fig. 8 could be present in a 
microcirculation of human beings. This observation 
supports the hypothesis that in low blood flow rate 
cases, similar to those found in human beings, a 
vasodilator such as NO would be required to cause 
RBCs to enter a capillary. 
    

 
 
Figure 8: Shown are two RBCs in an arteriole, one of 
which entering a capillary perpendicular to the 
arteriole. In this case the inlet velocity of plasma is 
assumed to be 10 cm/s. The results imply that at 
unreasonably high plasma flow rates in a 
microcirculation a favorable vortex may be produced 
pulling the RBCs inside of the capillary.  
 
 An advantage of this model, and whose generalized 
version in which chemical reactions will be included, is 
that the role of anti-coagulant drugs can be investigated 
in irregular vessels, as illustrated in Fig. (9).  
 

 
 
Figure 9: Aggregation and deformation of spherical 
RBCs in a irregular duct with length of  20 mµ . 
 
Conclusion 
 
   Here several models were used to investigate 
deformation and flow of RBCs in microcirculation. 
Using a comprehensive model, it is shown that red 
cells never get stuck in capillaries, and negotiate these 
tiny vessels with ease.  Using glass tiny capillaries, it 
has been shown that, down to about 3.5 microns 
diameter a red cell can be sucked into the tube without 
bursting the membrane.  
 Furthermore, a simplified continuum type approach 
is proposed. It has been shown that a model based on 
volume of fluid (VOF) can predict deformation and 
flow of RBCs in an arteriole successfully. It is well 
known that, with the exception of liver sinusoids, 
capillaries do not have muscle cells and are not subject 
to dilation through a nitric oxide mechanism. However, 
the results obtained highlight the importance of a 

vasodilator such as NO for controlling blood traffic in 
the microcirculation. 
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