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Abstract: In surgical interventions, miniature metal-
lic tools such as thin electrodes and needles are intro-
duced in tissue. Tracking systems are used to estimate
their precise position. In this paper we describe an al-
gorithm that exploits a three-dimensional ultrasound
image and raw radio-frequency (RF) signal to deter-
mine the position of a thin, metallic electrode in bio-
logical tissue. We assume that electrode appears in 3D
ultrasound image as a bright, elongated region. To es-
timate its position, a mathematical model of the region
was established. It approximates the electrode axis
with a polynomial curve. The voxel intensity distribu-
tion near the ray axis was determined from acquired
RF signals. The model parameters are estimated by
the RANSAC estimator. Finally, the electrode end-
points are located. The method was tested on real ul-
trasound data of a phantom with a thin tungsten elec-
trode inserted. The results of experiments show that
the method is stable even if the data are very noisy.

Introduction

During medical interventions, miniature surgical in-
struments such as needles and electrodes are introduced
in biological tissue. In biopsy, for example, tissue sam-
ples are taken from a particular region of the body by
means of a thin needle. Another example is the implan-
tation of miniature electrodes into the cortex. All such
cases require precise and fast determination of tool posi-
tion inside the tissue structure.

The ultrasound imaging modality offers a non-
invasive, not-expensive and portable way of data acqui-
sition that can serve for automatic tool localization in bi-
ological tissue. Figure 1 and Figure 2 show an example of
an image from the three-dimensional ultrasound scanner
KRETZ Voluson 530D. It represents a biological tissue
with a thin, tungsten electrode of 150 µm in diameter. In
this paper we show how to estimate the positon of such
object inside biological tissue. The processing of medi-
cal ultrasound data is difficult for several reasons. First,
tissue is composed of a large number of particulars with
the size comparable to the ultrasound wavelength, which
act as scatterers giving rise to the typical speckle pattern.
Second, many inhomogeneities present in the tissue are
responsible for artifacts such as shades, reverberation and

refractions. They cause objects to have missing parts and
irregular contours. Third, volumetric data are very large.

Figure 1: Three-dimensional ultrasound image of a tung-
sten electrode in a phantom mimicking biological tissue.

Existing methods

A variety of algorithms for object localization in
three-dimensional images exists. Simple techniques de-
tect boundaries between the object and the background.
The boundaries are joined together to form the object
contour. The main difficulty lies in a reliable detection
of boundaries, especially in the case of noisy data. Tech-
niques such as Canny detector [1] are likely to fail for
ultrasound data. An adaptive model has been imple-
mented [2]. It is based on a linear stochastic model of
brightness intensity. For each voxel, its model param-
eters are estimated with the Bayes estimator. Although
this technique makes the boundary detection robust, due
to its high computational load, it is not suitable for ap-
plications where fast data processing is required. A set
of elementary entities (“sticks”) such as line-segments of
the same length and different orientations can locally ap-
proximate the object contour [3]. The sticks algorithm as-
signs to each voxel a value equal to the maximum sum of
voxel values along a stick over the set of sticks. Novotny
[4] implemented an algorithm for electrode localization
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Figure 2: Planar cut of data (Figure 1) passing through
the electrode axis.

in three-dimensional ultrasound data. Data are first seg-
mented with thresholding. Next, they are divided into
mutually disjoined regions. For each of them, the length
and width is estimated with the PCA analysis. The re-
gion with the highest ration length/width is marked as
the localized electrode. In [5], Ding demonstrated that a
straight, elongated object can be localized with a parallel
projection of the voxels. The projection area of the object
is minimal when the direction of the projection is paral-
lel with the electrode axis. Tao [6] introduced a model
fitting algorithm to segment acoustical data. The object
to localize is described with a superquadrics. Then the
model parameters are estimated with the RANSAC esti-
mator.

Proposed method

The method presented in this paper permits to deter-
mine the position of a thin, metallic electrode inside a
biological tissue. Input data to the algorithm is a three-
dimensional ultrasound image acquired from scanning
the region of tissue comprising the electrode. Due to dis-
tinct acoustical properties of metal and tissue, the elec-
trode voxels have in general higher values compared to
tissue voxels. We suppose that the electrode diameter is
very small (in order of hundreds of µm). It is likely to
curve slightly as it penetrates the tissue. Therefore, we
assume that the electrode presents itself in a 3D ultra-
sound image as a bright, elongated region with a curvi-
linear axis. To determine its position, we will use an al-
gorithm similar to that proposed by Tao [6]. However, in
our implementation the sought object is described with
simpler mathematical model to reduce the computational
cost. The electrode axis is modeled with a polynomial

curve. We then use the fact that the voxel value depends
on the distance from the axis. This dependence was ex-
perimentally established from measured radio-frequency
(RF) signals. The model parameters are estimated by the
RANSAC [7], which is an estimator known for its robust-
ness against the noise. In the last step, the voxel values
along the estimated electrode axis are used to determine
its endpoints.

The next section describes in details the implemented
method. In the section 4 we show the results of the algo-
rithm on simulated and real ultrasound data. The paper
concludes with a discussion of the algorithm properties
and experiment results.

Method

The algorithm takes as input a 3D image described by
a discrete function I,

I : A �→ B, (1)

where A = {xi ∈ R
3 | i = 1,2, . . . ,N} is a countable set

of points (voxels) and B ⊂ R
+
0 is the set of voxel values.

Output of the algorithm are parameters of a curve that ap-
proximates the electrode axis and two points on the curve
determining the electrode tips.

Assumptions

Several assumptions have been made regarding the
electrode appearance in the image. Due to distinct acous-
tical properties of metal and biological tissue, we assume
that the electrode appears as a region M ⊂ A in which the
voxel values are much greater than the values of back-
ground voxels,

I(xi) � I(x j) ∀xi ∈ M, ∀x j ∈ A\M. (2)

Second, we expect that the length of the electrode vis-
ible in the data is typically much greater than its diameter.
Taking into account possible curvature of the electrode,
the region M can be modeled as the interior of a cylinder
with a curvilinear axis.

Pre-segmentation

In the first step, the voxels from the set A are clas-
sified in two disjoined sets Ae and Ab. This operation
roughly distinguishes between the electrode voxels and
background voxels. It is accomplished by thresholding.
The treshold is selected such that the set Ae consists of
10% of voxels with the highest values and Ab = A \Ae.
Figure 3 depicts the result of the pre-segmentation step.
The goal is to accelerate the algorithm, since only the
voxels from Ae are processed in the consecutive compu-
tations.
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Figure 3: Pre-segmented data. Only the voxels from the
set Ae are shown.

Model fitting

The presence of noise in the data causes that the set
Ae contains also background voxels (false positives), see
Figure 3. To distinguish them from electrode voxels, we
implemented a model fitting approach. The electrode is
described by a model with parameters estimated by the
RANSAC algorithm.

Model The mathematical model of the electrode vox-
els is composed of two parts: (i) parametric polynomial
approximates the curvilinear electrode axis, (ii) depen-
dence between the voxel values and their distance from
the electrode axis.

The localization algorithm takes into account possi-
ble electrode curvature in biological tissue. The electrode
axis is modeled by a polynomial l(t) with degree 3 de-
fined as

l(t) : x(t) = a0 + a1t + a2t2 + a3t3

y(t) = b0 + b1t + b2t2 + b3t3 (3)

z(t) = c0 + c1t + c2t2 + c3t3, t ∈ R,

where Θ = (a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3) is the
parameter vector determining the curve position and
shape. The polynomial degree was set to 3 as the trade-off
between the range of shape that can modeled with such a
curve and undesirable ripples typical for higher-degree
polynomials.

The values of electrode voxels in the region M vary.
They depend on many aspects such as the acquisition ge-
ometry, the ultrasound probe, the energy profile of ul-
trasound beams, etc. To approximate this dependence,
we experimentally estimated the function of voxel in-
tensity on its distance from the electrode axis. Let

{r1(t),r2(t), . . . ,rM(t)} be a set of backscattered RF sig-
nals corresponding to ultrasound beams passing through
the electrode axis. Let { f1(d), f2(d), . . . , fM(d)} be the
set of their envelopes. In the Appendix we show how
the envelope of a RF signal is calculated. For each
k = 1,2, . . . ,M, the signal fk(d) is shifted by a constant
ak,

gk(d) = fk(d−ak), (4)

so that gk is a function of voxel intensity depending on
its distance d from the electrode axis. The value ak is
determined using the cross-correlation function between
the signals { f1(d), f2(d), . . . , fM(d)}.

We estimate the joint probability density function
p(v,d) between voxel intensity v and distance d. For
fixed d = d∗ the p(v,d∗) is estimated as a histogram of
the values {g1(d∗),g2(d∗), . . . ,gM(d∗)}. Figure 4 shows
the resulting dependency between the voxel intensity and
the distance d.
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Figure 4: Estimated joint probability density function be-
tween voxel intensity and its distance from electrode axis.

We can now define the expectation

h(d) =
∫ ∞

−∞
vp(v,d)dv (5)

This function is used to model the dependence between
the voxel intensity and its distance from the electrode axis
(Figure 5).

Estimation of parameter vector Θ The parameter
vector Θ is estimated by the RANSAC algorithm [7]. It
is a robust estimator used to fit models to data set with
large number of outliers. The principle is simple: Re-
peatedly, small random subsets of the input data set are
selected. Model is fitted to the subset and the quality of
the estimated model is calculated using a cost function.
The process terminates when the likelihood of finding a
better model falls below a threshold.

In our application, we fit the polynomial curve with
the parameter vector Θ to the data set Ae. Let D ⊂ Ae

be a set of randomly selected points from Ae. Since the



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Distance [mm]

E
xp

ec
te

d 
vo

xe
l i

nt
en

si
ty

Expected voxel intensity depending on the distance from the electrode axis

Figure 5: Expected voxel intensity as a function of the
distance from the electrode axis.

number of parameters to estimate is 12 and each point in
Ae has three coordinates, we set the size of D to 4. Once
D is selected, the parameter vector Θk is calculated from
(3) so that the polynomial passes through the points in D.
To estimate the quality of the induced model lΘk(t), the
cost function C(Θk) is defined as

C(Θk) = ∑
x∈Ae

[I(x)−h(ε(lΘk(t),x))]2 (6)

where ε(lΘk (t),x) is the distance of the point x from the
curve lΘk(t), I(x) is the true intensity and h(ε(lΘk(t),x))
is expected voxel intensity, see (5). The parameter vector
Θ̂ that minimizes C(Θk),

Θ̂ = argmin
Θk

C(Θk) (7)

determines the polynomial curve that fits best the points
from the data set Ae. The number of iterations is set to
such a value that the probability of the event “better-than-
currently-best estimated model is missed” is less than η .
Setting η to 0.05 requires about 500 iterations. See [8]
for details on how to set the number of iterations.

Algorithm - implemented estimation of the vector Θ
with RANSAC.

• Input: Data set Ak.
• Output: Estimated parameter vector Θ̂.
• Iterations: k := 0, Θ̂ = 0. Repeat steps 1-4 until

P{better solution exists} < η .
(1) k := k + 1
(2) Hypothesis generation

(a) Select a random subset D ⊂ Ae, |D| = 4.
(b) Compute Θk from (3).

(3) Compute the cost function C(Θk) from (6).
(4) Update model parameters: If C(Θ̂) > C(Θk),

then Θ̂ := Θk.

Endpoint localization

The position of the electrode is determined by its end-
points. These points are located on the polynomial curve
lΘ̂(t) that approximates the electrode axis. Let us define
a function a(t) by formula

a(t) = I(lΘ̂(t)); ∀t ∈ R : lΘ̂(t) ∈ A. (8)

It is a function of voxel intensities along the curve lΘ̂(t),
see Figure 6. The range of t values corresponding
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Figure 6: Voxel intensity along the estimated polynomial
curve lΘ̂(t).

to the electrode should be now indentified .Two points
on the curve lΘ̂(t) are marked as the endpoints if the
value of the function a(t) falls under given threshold
T . Its value is determined from p(i |electrode), resp.
p(i |background), which is the conditional probability of
the intensity i given electrode voxel, resp. background
voxel. Figure 5 shows that the radius of the region M
is approximately 0.5 mm, so the values of the func-
tions {g1(d),g2(d), . . . ,gN(d)} for |d| ≤ 0.5 are the in-
tensities of electrode voxels. Analogously, the values of
the function {g1(d),g2(d), . . . ,gN(d)} for |d| > 0.5 are
the intensities of background voxels. Their histograms
were used to construct the probabilities p(i |electrode)
and p(i |background) shown in Figure 7. Finally, the
value of T is set to the point, where p(i |electrode) =
p(i |background). In our implementation T is approxi-
mately 12000.

Results

To test the algorithm, we used 3D ultrasound data
form the ultrasound scanner KRETZ Voluson 530D. A
tungsten electrode of 150 µm was inserted into a cryogel
phantom mimicking the acoustical properties of biolog-
ical tissue. The region of the phantom comprising the
electrode was scanned with the scanner’s transducer op-
erating at 7.5 MHz. We acquired volumetric data of the
size 680x680x1000 voxels. Figure 8 depicts the result
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Figure 7: The conditional probability p(i |electrode),
resp. p(i |background) of voxel intensity i given elec-
trode, resp. background voxel.

of an experiment. The axis of the localized electrode is
marked in green.

Figure 8: Result of the localizatin algorithm. Localized
electrode is marked in green.

Conclusion

The ultrasound modality is widely used in many ap-
plications of medical diagnostics and research. One of
them is the localization of miniature surgical instruments
once they are inserted into biological tissue. To facili-
tate this task, we developed an algorithm capable of au-
tomatic localization of metallic electrode from volumet-
ric ultrasound data. To surmount the problem of noise, a
model fitting approach was adopted. The RANSAC es-

timator is used to estimate the model parameters. The
algorithm was tested on 3D ultrasound data from the ul-
trasound scanner KRETZ Voluson 530D. The results of
the experiments show that the method is stable even if
the data contain high level of noise. Finally, the compu-
tational time is in order of seconds without any optimiza-
tion permitting to achieve near real-time localization.
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Appendix

Bamber [9] and Dydenko [10] describe the ultrasound
image formation from RF signals. The voxel intensity in
an ultrasound image is defined by the envelope of RF sig-
nals. Let r(t) be a RF signal. Figure 9 shows an exam-
ple, where we can observe the ultrasound pulse reflection
from the electrode.
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Figure 9: Example of a raw RF signal r(t) and its enve-
lope e(t). The peak corresponds to the reflection of the
ultrasound pulse from the electrode.

For the signal r(t) its envelope e(t) (Figure 9) is de-
termined as the complex modulus of the analytic signal
of r(t),

e(t) = |r(t)+ j r̂(t)| (9)

where r̂(t) is the Hilbert transform of r(t),

r̂(t) =
1
t
∗ r(t). (10)

The relation f (d) between the voxel intensity and its
distance d from the origin of the particular ultrasound
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 beam can be established as

f (d) = e

(
2d
ν

)
(11)

where ν is the velocity of sound in the medium.
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