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Abstract: A novel method for detecting
lesions in digital mammograms is presented.
The method relies on image texture seg-
mentation based on sparse representation of
image blocks using learned dictionaries. Two
different dictionaries are used to separate
the suspicious tissue from the background
tissue. By using a vector augmentation tech-
nique, the brighter regions are emphasized.
The proposed scheme is trained and tested
on mammograms from the MIAS public
database. In 14 mammograms containing
15 circumscribed lesions the method was
capable of detecting all but one lesion.

Introduction

Mammographic screening is widely considered to
be the most reliable method for the early detection
of breast cancer. To this end, large-scale mammo-
graphic screening programs are currently running in
a large number of countries. In Norway, all women
between 50 and 69 years of age are invited to partic-
ipate in the national screening program. The prob-
ability of dying of breast cancer has been reduced
by 30 % for women participating in the screening
program [1].

Mammograms are x-ray projections of the breast
tissue onto a detector array or a film plate. Tumors
often consist of dense tissue, and thus absorb most
of the incident x-rays. They can therefore often be
seen as bright regions in the mammograms.

The screening programs generate a vast number
of mammograms which are to be carefully examined,
usually by two radiologists. This is a costly and time
consuming process. A major concern is the number
of false negative errors, i.e. cases in which a mam-
mogram containing a malignant tumor is classified
as normal. It is seen that between 10 and 30 % of
cancers are missed during routine screening [2].

The above points have led to a large interest in
Computer Aided Detection (CAD) of breast cancer.
Research started in the early 1990’s, and lately a few
commercial systems have become available. Most
CAD systems are intended to give the radiologists a

second opinion of the suspicious regions in mammo-
grams. One problem with CAD systems is that ”per-
fect” detection (i.e. detection of all tumors present)
in practice leads to false positives (FPs), i.e. regions
of normal tissue detected (and classified as tumors).
Too many false positives may confuse the radiologist.

There are several factors that make breast can-
cer detection in mammograms a very difficult task
in image analysis. There is a large variation in the
appearance of both normal breast tissue and of can-
cerous tissue. Some breasts have very dense or glan-
dular parenchymal tissue that is radiopaque, while
other breasts are mostly fatty and therefore radiolu-
cent. There are several types of breast abnormalities
that are visible in mammograms: Asymmetry be-
tween the breasts, calcifications, increase in breast
tissue density, masses/lesions, and architectural dis-
tortions. CAD performance for microcalcifications
is on an acceptable level, but the performance for
lesions of various types is poorer.

The lesion class includes circumscribed le-
sions/masses, which are compact with lobular or
circular/oval shape, and spiculated/stellate lesions
which consist of a central mass with radiating
spicules in some or many directions. In the present
work we have so far focused on the circumscribed or
well-defined lesions.

The last years have seen little progress in CAD
performance. Most methods found in the literature
have been based on extracting various textural or
morphological features from the image pixels and
combining these in various ways.

We believe much can be gained by considering
the pixel values directly, i.e. without extracting any
features. The work presented in this article is to the
best of the authors’ knowledge the first attempt to
use learned dictionaries for texture classification of
digital mammograms.

Materials and Methods

Four training mammograms were used for
learning the dictionaries used in the classification.
These and the 14 test mammograms were taken from
the MIAS database provided by the Mammographic
Image Analysis Society (MIAS) in the UK [3]. Each
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mammogram contains at least one circumscribed
lesion. The mammograms were downsampled to
1/16×1/16 of their original size before classification.

The proposed method segments/classifies the in-
put mammogram into suspicious and non-suspicious
regions (i.e. normal breast tissue) using two learned
dictionaries.

Below we give a summary of the theory of learned
dictionaries.

Any N -dimensional vector can be written as a lin-
ear combination of K ≥ N vectors that span the
space. A good approximation to an N -dimensional
signal vector x can often be obtained by linearly
combining only a few of these K vectors. Math-
ematically, x = Fw + n, where F is a learned
frame/dictionary [4] in the form of an N ×K (K ≥
N) matrix, and where w is a sparse coefficient vector.
n represents the approximation error. The columns
of F are dictionary vectors. We emphasize that F
must be learned, contrary to the case of orthogonal
expansions. A properly trained dictionary results in
a small representation error even using a very sparse
representation, if the test vectors are reasonably sim-
ilar to the vectors used when learning the dictionary.
In general the error is larger for vectors that differ
much from the the vectors used when learning it.

Given a collection of L vectors that are to be ap-
proximated using F, an N × L data matrix X can
be formed, of which the columns are the collection of
vectors, X = [x1, . . . ,xL]. Then the representation
can be written

X = FW + N,

where W = [w1, . . . ,wL].
The training matrix from which F is to be learned

is denoted Y. In order to be able to make a good
approximation to X it is important that Y has more
or less the same ”qualities” as X. Learning F implies
minimizing the representation error ||Y−FW|| sub-
ject to W being sparse [4]. The sparsity constraint is
that only s dictionary vectors may be used in the rep-
resentation of each of the columns in X. In this work
the Method of Optimal Directions (MOD) is used for
learning [4]. The algorithm starts with a user sup-
plied initial dictionary F(0) and then improves it by
iteratively repeating two main steps:

1. W(i) is found by vector selection (ORMP is used
in this work) using dictionary F(i), where the
objective function to be minimized is
J(W) = ‖Y − F(i)W‖2.

2. F(i+1) is found from Y and W(i), where the
objective function is
J(F) = ‖Y − FW(i)‖2.
This gives:

F(i+1) = Y(W(i))T (W(i)(W(i))T )−1

Then we increment i and go to step 1.

i is the iteration number. The first step is subopti-
mal due to the use of practical vector selection algo-
rithms, while the second step finds the F that mini-
mizes the objective function.The dictionary F is now
learned, and it may now be used to approximate or
represent any column vector in X using a linear com-
bination of s of the dictionary vectors.

Sparse representations of image blocks by learned
dictionaries are used to classify each mammogram
into suspicious regions and non-suspicious regions.
A dictionary-based approach has been successfully
used in classification of various textures in [5]. Many
segmentation/classification algorithms partition an
image into regions that are similar according to a
predefined set of criteria. We learn one dictionary for
the lesion class and one for the normal tissue class.
Our criterion for e.g. a lesion region is that the im-
age blocks within it are represented better using the
lesion class dictionary than the normal class dictio-
nary.

The first task is to obtain good training sets for
both classes. As already mentioned the four training
mammograms are downsampled to 1/16 × 1/16 of
their original size. True lesion regions in the training
images are found by performing a watershed segmen-
tation [6] followed by an inspection to ensure that
only the true lesion is extracted. A large number, L,
of overlapping image blocks of dimension n×n from
the correct lesion regions are reshaped into training
vectors of dimension N = n×n and collectively used
as an N × L training matrix Y′

1 for the lesion class
dictionary. Since the breast tissue as seen in mam-
mograms often have a dominant direction all image
blocks are rotated 90◦, 180◦, and 270◦, prior to re-
shaping them into training vectors. Ending up with
dictionaries with directional qualities is thus avoided.
The unrotated blocks are used as well. In addition to
blocks from the interior of each region, image blocks
extending a few pixels outside the region boundaries
of the true lesions are used. We augment the train-
ing matrix with an extra row containing L elements
of value z. The new matrix is denoted Y1:

Y1 =




z
· · ·
Y′

1


 ,

where z is a constant vector with equal element val-
ues z. A discussion of the matrix augmentation is
given below.

The training vectors for the normal tissue class
dictionary are reshaped image blocks from normal
tissue regions in the same four mammograms. The
vectors are reshaped into a training matrix Y′

2 which
is augmented using precisely the same row vector as
used for Y′

1 yielding a second training matrix Y2:

Y2 =




z
· · ·
Y′

2


 .
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K randomly picked vectors from the lesion class
training matrix Y1 are now normalized and used as
column vectors in the initial dictionary associated
with this class. The initial dictionary associated with
normal breast tissue is formed in the same manner,
but now the K vectors are picked from the normal
class training matrix Y2.

As already mentioned the dictionaries have nor-
malized columns. This is why the vectors must be
augmented prior to normalization. Consider the sit-
uation that one initial dictionary is created from a
certain set of vectors and that a second initial dic-
tionary is created from the same set of vectors mul-
tiplied by a constant. After normalization the two
dictionaries will be exactly the same. Augmenting
the vectors prior to normalization results in two dif-
fering dictionaries. Returning to the case of texture
classification of mammograms, it is known that the
average gray level value is higher for most lesions
than for normal tissue. Augmenting the vectors en-
sures that the dictionaries respond differently to dark
and bright regions. Some classification results with
different values of the augmentation element z are
given in the next section.

The initial dictionaries are now used as input to
the MOD algorithm described previously. The re-
sulting dictionaries are denoted F1 and F2, respec-
tively.

The subsequent classification step is pixel-based,
i.e. one pixel and its neighborhood is considered at
a time. The pixels within each such image block
are reshaped into a test vector x and augmented
using the same element value z as for the training
vectors. The test vector is first represented using the
lesion class dictionary, yielding the representation
error r1 = ||x − F1w1||. Then the normal class
dictionary is used, resulting in the representation
error r2 = ||x − F2w2||. The center pixel in the
image block under consideration is assigned class 1
(lesion) if r1 < r2, otherwise it is assigned class 2
(normal tissue).

Results

The pixels of class 1 constitute noisy images
of suspicious regions that must be enhanced, see
Figure 1(b) for an example. The images are median
filtered using a circular neighborhood of radius
R, thus removing isolated points and resulting in
connected regions. See Figures 1(c) and 1(d) for
results obtained with R = 2 and R = 6. The
parameters used were z = 250, block size n = 9,
K = 164, and S = 3. We see that the number of
regions is reduced as we increase the median filter
radius R. Using a too high radius may result in
loss of small true detections. For all images shown
in this article, the true lesion is located within
the green truth circle. For all images the pectoral
muscle is classified as lesion tissue (see e.g. the lower
left corner of the images in Figure 1). There is the
possibility to remove such detections, but in rare

cases there may exist lesions in the muscle region.
It might be necessary to treat this region separately.

(a) (b)

(c) (d)

Figure 1: Classification results obtained using various
values of the median filter radius R with z = 250, block
size n = 9, total number of dictionary vectors K = 164
and S = 3 vectors in the linear combination. (a): Mam-
mogram mdb019ll. (b): Result obtained without median
filtering. (c): Result obtained using R = 2. (d): Result
obtained using R = 6.

As stated in the introduction, one problem with
CAD of mammograms in the relatively high number
of False Positives (FP), i.e. the number of detec-
tions that are not lesions. The presented method is
no exception; not all the regions classified are true
lesions.

Results obtained with various values of z are
shown in Figure 2. The parameters used were R = 4,
n = 9, K = 164, and S = 3. We see that using z = 1
several regions that are smooth are classified as le-
sions even though they have a low average gray level.
Increasing z to 50 and 250 gradually suppresses these
regions, instead emphasizing regions of higher aver-
age gray level.

The effect of changing the size n of the image
blocks is illustrated in Figure 3. We used z = 250 ,
R = 4, K = 164, and S = 3. It is seen that using
n = 9 gives a smaller number of regions than n = 7.
In addition, the region follows the true outline of the
lesion better.

The effect of varying the total number of dictio-
nary vectors K is shown in Figure 4. z = 250, R = 4,
and S = 3 was used. The results are in general dif-
ferent for the two K values. The small red region
to the right of the green truth circle in Figure 4(d)
is actually a lesion detected with K = 100. Figure
4(f) shows that the lesion is missed when K = 40 is
used. This indicates that it probably is a good idea
to use overcomplete dictionaries, i.e. the number of
dictionary vectors K is larger than the dimension of
the vectors N .
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(a) (b)

(c) (d)

Figure 2: Classification results obtained using various
values of z with median filter radius R = 4, block size n =
9, total number of dictionary vectors K = 164 and S =
3 vectors in the linear combination. (a): Mammogram
mdb023ll. (b): Result obtained using z = 1. (c): Result
obtained using z = 50. (d): Result obtained using z =
250.

13 of the 14 test mammograms contain one lesion
each while one mammogram contains two lesions. 14
of the 15 lesions are detected using n = 9, z = 250,
S = 3, K = 164, and R = 4. A relatively good
segmentation quality was achieved. The lesion not
correctly detected had low contrast and was located
in very dense tissue, see Figure 5.

Conclusions

A novel method of classifying mammograms
into suspicious and non-suspicious regions has been
presented. The results presented are promising. 14
of 15 lesions were detected with relatively high seg-
mentation quality. There is, however, a number of
false positives (FP) present in all the images. An FP
reduction technique should be developed, perhaps
one based on another set of learned dictionaries. For
mammograms of dense breasts there is at present
a potential for improvement. The method has only
been tested on a limited number of mammograms,
and needs testing on a larger database to provide
more reliable sensitivity/specificity data. Given the
promising results obtained for circumscribed lesions
the method should be thoroughly tested on more
subtle types of lesions, e.g. stellate lesions. Inter-
esting problems involving more than two texture
classes should be formulated and tested.

(a) (b) (c) (d)

(e) (f)

Figure 3: Classification results obtained using n = 7 and
n = 9 with z = 250 with median filter radius R = 4, total
number of dictionary vectors K = 164 and S = 3 vectors
in the linear combination. (a): Mammogram mdb005ll.
(b): Mammogram mdb080rm. (c): Result for mdb005ll
obtained using n = 7. (d): Result for mdb080rm ob-
tained using n = 7. (e): Result for mdb005ll obtained
using n = 9. (f): Result for mdb080rm obtained using
n = 9.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Classification results obtained using K = 40
and K = 100, with z = 250, median filter radius R = 4,
and S = 3 vectors in the linear combination. (a): Mam-
mogram mdb019ll. (b): Mammogram mdb132rx. (c):
Result for mdb019ll obtained using K = 100. (d): Re-
sult for mdb132rx obtained using K = 100. (e): Result
for mdb019ll obtained using K = 40. (f): Result for
mdb132rx obtained using K = 40.

(a) (b)

Figure 5: The mammogram mdb010rm for which the
lesion is not detected. (a): Mammogram and truth circle.
(b): Mammogram and detected regions. K = 164, n = 9,
R = 4, S = 3, and z = 250.
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