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Abstract: Architectural distortion is a subtle abnor-

mality that can be observed in mammograms, and is

one of the earliest and most commonly missed signs of

breast cancer. Computer-aided diagnosis techniques

can be valuable aids to the radiologist in detecting ar-

chitectural distortion. Recently, we proposed a tech-

nique for the detection and localization of architec-

tural distortion in mammograms, based on orienta-

tion fields and phase portraits. In this paper, we pro-

pose the use of methods for the identification and ana-

lysis of curvilinear structures in mammographic im-

ages, as a means to reduce the false-positive rate of our

method for the detection of architectural distortion.

It is shown that the selection of curvilinear structures

prior to the phase portrait modeling step effectively

improves the sensitivity of the method, to about 84%

at 7.8 false-positives per image.

Introduction: Architectural distortion

Current statistics from the National Cancer Institute

of Canada [1] show that breast cancer has the highest

probability of development among all cancers in women.

The importance of early detection of breast cancer is ev-

ident: whereas localized cancer is associated with a five-

year survival rate of 97.5%, disseminated cancer leads to

a five-year survival rate of only 20.4% [2]. Mammogra-

phy is the best available examination for the detection of

early signs of breast cancer, and mammographic screen-

ing has been shown to be highly effective in reducing

breast cancer mortality rates. However, the sensitivity of

screening mammography is affected by the high volume

of cases to be examined in a screening program, and

by the subtle appearance of abnormalities in a mammo-

graphic image. Among the most commonly missed signs

of breast cancer is architectural distortion, which is de-

fined in the Breast Imaging Reporting and Data System

(BI-RADS) [3] as follows: “The normal architecture (of

the breast) is distorted with no definite mass visible. This

includes spiculations radiating from a point and focal re-

traction or distortion at the edge of the parenchyma.”

Computer-aided diagnosis (CAD) techniques could

offer a cost-effective alternative to double-reading as a

means of reducing errors. A CAD system could act as

a second reader, prompting the radiologist to review

areas in a mammogram deemed suspicious by specialized

computer algorithms. Recent studies have demonstrated

that CAD systems can improve a radiologist’s sensitivity

without a substantial increase in the recall rate [4]. Never-

theless, Baker et al. [5] found the sensitivity of two com-

mercial CAD systems to be poor in detecting architec-

tural distortion: fewer than 50% of the cases of architec-

tural distortion presented were detected. These findings

indicate the need for further research in this area, and the

development of algorithms designed specifically to char-

acterize and detect architectural distortion [6].

In this paper, we propose the use of methods for the

identification and analysis of curvilinear structures (CLS)

in mammographic images, as a means to reduce the false-

positive rate of our method for the detection of archi-

tectural distortion [7, 8]. The method consists of five

stages: orientation field extraction, curvilinear structure

selection, orientation field filtering and downsampling,

phase portrait modeling, and detection of sites of archi-

tectural distortion. The orientation field is extracted us-

ing a bank of real Gabor filters employed as line detec-

tors [9]. The CLS of interest (spicules and fibrous tissue)

are separated from confounding structures (pectoral mus-

cle edge, parenchymal tissue edges, breast boundary, and

noise) using the orientation field, the gradient field, and a

nonmaximal suppression (NMS) technique [10]. The se-

lected core CLS pixels and the orientation field are fil-

tered and downsampled. The orientation field is analyzed

using phase portraits, yielding three phase portrait maps:

node, saddle, and spiral. The node map is further ana-

lyzed in order to detect the sites of architectural distor-

tion. Figure 1 illustrates the proposed method.

The following sections present a discussion on each

stage of processing. The results of processing mammo-

graphic images containing architectural distortion from

the Mini-MIAS database [11] are presented.

Extraction of the orientation field

Gabor filters may be used as line detectors, due to

their good spatial and frequency localization. In this

work, we obtain the texture orientation at each pixel

through the use of a Gabor filter bank. The Gabor filter

bank is composed of 180 filters evenly spaced in orien-

tation, covering the range [−π/2,π/2]. The Gabor filter
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Figure 1: Block diagram of the proposed method for the

detection of sites of architectural distortion in mammo-

grams. CLS = curvilinear structure.
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Rotation of this kernel allows the generation of Gabor

kernels at different angles. In the present work, the pa-

rameters in Equation (1), namely σx, σy, and f , are de-

rived from design rules as follows:

• Let τ be the full-width at half-maximum of the

Gaussian term in Equation (1) along the x axis. Then,

σx = τ/(2
√

2ln2) = τ/2.35.

• The cosine term has a period of τ; therefore, f = 1/τ .

• The value of σy is defined as σy = l σx, where l de-

termines the elongation of the Gabor filter in the y

direction, as compared to the extent of the filter in

the x direction.

We use τ = 4 pixels (corresponding to a thickness of

0.8 mm at a pixel size of 200 µm) and l = 8 in the present

work. These values were determined empirically, by ob-

serving the typical spicule width and length in mam-

mograms with architectural distortion in the Mini-MIAS

database [11].

The texture orientation at a pixel is estimated as the

orientation of the Gabor filter that yields the highest

magnitude response at that pixel. The orientation at ev-

ery pixel is used to compose the orientation field an-

gle θ (x,y). The magnitude of the corresponding filter re-

sponse forms the magnitude image M(x,y). The orien-

tation field thus obtained has the same resolution as the

original mammogram (200 µm).

Curvilinear structure selection

The Gabor filter bank described above is sensitive to

line structures, such as spicules and fibers. However, the

filter bank also recognizes strong image edges as oriented

features. Examples of strong edges in mammographic im-

ages are the pectoral muscle edge, the parenchymal tissue

edge, and vessel walls. Strong edges around the fibro-

glandular disk may be of interest in the detection of focal

retraction, a particular form of architectural distortion [6].

Nevertheless, in our method, it is desirable that only lin-

ear structures related to fibro-glandular tissue are identi-

fied as oriented features.

The method for the selection of CLS implemented

in this work includes three stages: segmentation of the

breast area, detection of core CLS pixels, and rejection of

CLS pixels at sites with a strong gradient.

The breast area is segmented by the thresholding

method of Otsu [12]. Pixels outside the breast area are re-

moved from further consideration at this stage. The core

CLS pixels are detected using the NMS technique [10]

applied to the magnitude image. The NMS algorithm

identifies the core CLS pixels by comparing each pixel

in the magnitude image with its neighbors along the di-

rection that is perpendicular to the local orientation field

angle. If the pixel under investigation has a larger mag-

nitude value than the corresponding neighbors, the pixel

is considered to be a core CLS pixel. Nonmaximal sup-

pression is a common step in many edge detectors (e.g.,

Canny [13]), and Zwiggelaar et al. [14] used NMS, as

described in this section, for the detection of CLS pixels.

The core CLS pixels associated with the presence of

strong gradients are rejected. The rejection procedure im-

plemented in this work follows the pixel rejection criteria

proposed by Karssemeijer and te Brake [15], in the con-

text of detection of spiculated lesions. The gradient of the

mammographic image is obtained using the first deriva-

tive of a Gaussian with a standard deviation of 1mm. The

direction of the gradient is computed, and compared to

the direction of the orientation field, for each core CLS

pixel. The core CLS pixel is discarded if the difference

between the direction of the orientation field and the di-

rection perpendicular to the gradient is less than π/6. It

is assumed that the presence of a strong gradient causes

a ripple in the magnitude image, leading to an erroneous

detection of a CLS.

Curvilinear structures present within the fibro-

glandular disk will exhibit reduced contrast as compared

to similar CLS outside the fibro-glandular disk. As a

consequence, CLS within the fibro-glandular disk will

present smaller magnitude field values than those of CLS

outside the fibro-glandular disk. In order to assign the

same weight to all CLS, independent of location, the

magnitude field M(x,y) is replaced by an image com-
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 posed of the core CLS pixels, MCLS(x,y), defined as fol-

lows:

MCLS(x,y) =

{

1 if pixel at (x,y) is core CLS pixel

0 otherwise.
(2)

This procedure ensures that important CLS with low con-

trast, such as spicules within the fibro-glandular disk, are

not missed by the algorithm.

Filtering and downsampling the orientation field

It is necessary to downsample the orientation field

in order to reduce the computational effort required to

process full mammograms. The downsampling procedure

must be preceded by a filtering step in order to avoid the

loss of important information regarding the presence of

CLS, and to reduce noise.

Let h(x,y) be a Gaussian filter of standard deviation

σ f , defined as

h(x,y) =
1

2πσ f

exp

[

−1

2

(

x2 + y2

σ2
f

)]

. (3)

Define the images s(x,y) = MCLS(x,y)sin[2θ (x,y)] and

c(x,y) = MCLS(x,y)cos[2θ (x,y)]. Then, the filtered ori-

entation field angle θ f (x,y) is obtained as

θ f (x,y) =
1

2
arctan

(

(h ∗ s)(x,y)

(h ∗ c)(x,y)

)

, (4)

where the asterisk denotes convolution.

The filtered orientation field angle is downsampled by

a factor of four, thus producing the downsampled orien-

tation field angle θd as

θd(x,y) = θ f (4x,4y). (5)

The magnitude MCLS(x,y) of the orientation field is

also filtered and downsampled. The filtered orientation

field magnitude M f (x,y) is given by

M f (x,y) = (h ∗MCLS)(x,y), (6)

and the downsampled magnitude field is given by

Md(x,y) = M f (4x,4y). (7)

The resulting angle and magnitude fields have a reso-

lution of 0.8 mm/pixel. The angle filtering procedure em-

ployed in this work is a variant of Rao’s dominant lo-

cal orientation method [16]: in our procedure we use a

Gaussian filter instead of a box filter.

Phase portrait modeling

The phase portrait of a system of differential equa-

tions is the display of the possible trajectories, in the

phase plane, of the state of a dynamical system. Rao and

Jain [16, 17] have employed phase portraits to analyze

images depicting oriented texture patterns as follows:

the geometrical patterns in phase portraits of systems of

two linear first-order differential equations are associated

with the patterns encountered in an image presenting ori-

ented texture. Recently, we used phase portrait modeling

to detect architectural distortion in mammograms [7, 8]:

the present work is an extension of our previous method.

Consider the following system of linear first-order

differential equations:

(

ṗ(t)
q̇(t)

)

= A

(

p(t)
q(t)

)

+ b , (8)

where A is a 2×2 matrix and b is a 2×1 column matrix

(a vector). The functions p(t) and q(t) represent the state

variables of a dynamical system, as a function of time

(e.g., the position and the momentum of a particle, or the

pressure and the temperature of a gas). In this case, there

are only three possible types of phase portraits: node, sad-

dle, and spiral [18]. The type of phase portrait can be de-

termined from the nature of the eigenvalues of A. The

center (p0,q0) of the phase portrait is given by the fixed

point of Equation (8):

(

ṗ(t)
q̇(t)

)

= 0 ⇒
(

p0

q0

)

= −A−1b. (9)

Associating the functions p(t) and q(t) with the x and

y coordinates of the Cartesian (image) plane, we can de-

fine the orientation field generated by Equation (8) as

φ(x,y|A,b) = arctan

(

q̇(t)

ṗ(t)

)

, (10)

which is the angle of the velocity vector [ṗ(t), q̇(t)] with

the x axis at (x,y) = [p(t),q(t)]. Using the concepts pre-

sented above, we may qualitatively describe the orienta-

tion field of a textured image by determining locally the

type of the phase portrait that is most similar to the ori-

entation field, along with the center of the phase portrait.

This notion will be employed in the present work to de-

tect and localize architectural distortion, as described be-

low.

An analysis window of 10× 10 pixels (8× 8 mm) is

slid pixel by pixel through the downsampled orientation

field. The phase portrait model parameters [the matrix

A and the vector b in Equation (8)] that best represent

the orientation field under the analysis window are esti-

mated, at each position of the analysis window. In order

to estimate A and b, let ∆(x,y|A,b) be a measure of the

error between the downsampled orientation field θd(x,y)
and the orientation φ(x,y|A,b) given by the model, at the

pixel location (x,y). The error measure is defined as

∆(x,y|A,b) = Md(x,y)sin[θd(x,y)−φ(x,y|A,b)]. (11)

The sum of the squared error is given by

ε2(A,b) = ∑
x

∑
y

∆2(x,y|A,b) , (12)
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 where the range of the summation indexes x and y is the

set of the pixel locations within the analysis window. Es-

timates of A and b that minimize ε2(A,b) are obtained

as follows:

(1) Initial estimates ASA and bSA of A and b are obtained

through the minimization of ε2(A,b) using simulated

annealing [19].

(2) A nonlinear least squares algorithm [20] is used to

refine the estimates ASA and bSA obtained in the pre-

vious step, producing the optimal estimates Aopt and

bopt.

The type of phase portrait is determined by the eigen-

values of Aopt; the fixed point location is given by Equa-

tion (9), using the optimal values Aopt and bopt. A vote is

cast in the corresponding phase portrait map, at the fixed

point location. This process is repeated for every position

of the analysis window.

Detection of sites of architectural distortion

The node map is used to detect and locate the sites of

architectural distortion in a mammogram, as follows:

(1) A Gaussian filter of standard deviation equal to

4.8 mm (6 pixels) is applied to the node map in or-

der to reduce noise.

(2) The filtered node map is processed with a morpholog-

ical gray-scale opening procedure with a structuring

element of radius 8 mm (10 pixels) to eliminate peaks

in the filtered node map that are closer than 8 mm to

a locally dominant peak.

(3) The peaks of the resulting image are detected, and a

threshold is applied to eliminate false positives. The

remaining peaks, if any, indicate the potential sites of

architectural distortion.

Results

The proposed method was applied to 19 mammo-

grams containing architectural distortion, from the Mini-

MIAS database [11]. For comparison purposes, a modi-

fied version of the proposed method, in which the CLS

selection step is removed, was also applied to the same

mammograms. The removal of the CLS selection stage

was accomplished by the following modifications:

• skipping the NMS step and the rejection of core CLS

pixels associated with strong gradients, and

• setting all pixels in MCLS(x,y) to one.

Figure 2 shows a mammographic image in which ar-

chitectural distortion is present. The magnitude image

M(x,y) is shown in Figure 3. Observe that the magnitude

image presents a higher response for CLS located outside

the fibro-glandular disk, due to their higher contrast as

compared to CLS within the fibro-glandular disk.

The rejection of core CLS pixels associated with

strong gradients is illustrated in Figure 4. The figure dis-

plays a region of interest (ROI) from the mammographic

image in Figure 2, which contains a blood vessel. It is

noticed that some of the rejected core CLS pixels are as-

sociated with the walls of the vessel. Several other re-

jected core CLS pixels are not associated with the dis-

played vessel. This observation indicates the need for im-

proved methods for CLS selection.

The usage of CLS selection improved the specificity

of our algorithm for the detection of architectural dis-

tortion, when compared with the same method without

CLS selection. This observation is supported by the re-

sults shown in Figures 5 and 6. Figure 5 shows the fil-

tered node map obtained without and with CLS selection.

It is observed that the node map with CLS selection ex-

hibits a single strong response at the site of architectural

distortion. The node map without CLS selection is char-

acterized by a strong response at the site of architectural

distortion, as well as a strong response in the nipple re-

gion, and scattered responses throughout the breast area.

The CLS selection step eliminates pixels that do not con-

vey relevant information in the context of detecting archi-

tectural distortion. This increase in the quality of avail-

able information improves the meaningfulness of the es-

timated parameters in the phase portrait modeling step,

resulting in more specific detection of architectural dis-

tortion.

Figure 6 shows the free-response receiver operating

characteristics (FROC) curve for the proposed method,

as well as the FROC curve obtained without CLS selec-

tion. It is observed that the use of CLS selection results

in a more sensitive detection algorithm, with fewer false

positives per image, when compared to the same method

without CLS selection.

Discussion

In this work, we proposed the use of CLS analysis

to improve the specificity of our method for the detec-

tion of architectural distortion in mammograms. A sig-

nificant improvement in specificity was obtained; never-

theless, further reduction in the number of false-positives

is required. Improved methods for the detection of archi-

tectural distortion at low false-positive rates should lead

to efficient and earlier detection of breast cancer.
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Figure 2: Mammographic image (mdb115 from the

Mini-MIAS database) exhibiting architectural distortion

(dashed circle).

Figure 3: Magnitude image from the Gabor filter bank for

the mammogram in Figure 2.

(a) (b)

Figure 4: Rejection of core CLS pixels associated with

strong gradients. (a) Region-of-interest (ROI) from the

mammographic image in Figure 2. (b) Rejected pixels

(shown in white) superimposed on the ROI in (a).

(a) (b)

Figure 5: Node map for the mammogram in Figure 2 af-

ter Gaussian filtering (σ = 4.8 mm): (a) without CLS se-

lection; (b) using CLS selection. Dashed circle: site of

architectural distortion.
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