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Abstract: The automatic detection and classification 
of cardiac arrhythmias is important for diagnosis of 
cardiac abnormalities. This work is focused on 
classification of normal sinus rhythm and premature 
ventricular contractions. The proposed method uses 
wavelets for the feature selection and extraction 
(searching for a local maximum in the contour 
envelope successfully detects R-peaks) and Hidden 
Markov models for the classification. The ECG data 
is taken from standard MIT-BIH arrhythmia 
database. The classification accuracy is 95.6% for 
normal sinus rhythm beats and 93.3% for premature 
ventricular contraction beats. 

 
Introduction 

 
The medical domain is one of the areas in which 

automatic processing systems are most frequently 
applied. This is quite natural because modern medicine 
generates huge amounts of data, but at the same time 
there is often a lack of data understanding. New 
methods can help in dealing with this problem, they can 
simplify and usually speed up the processing of large 
volumes of data. New algorithms work in time-
frequency domain and combine some advantageous 
characteristics known from classical methods – mainly 
they allow frequency analysis with time information 
about analyzed features. 

The automated detection and classification of 
cardiac arrhythmias is important for diagnosis of cardiac 
abnormalities. Our previous work [1] was focused to 
detection of atrial premature contractions (APC) and 
premature ventricular contractions (PVC) among 
normal sinus rhythm (NSR). The used methods 
employed wavelets and a contour envelope computed 
from wavelet coefficients. Searching for a local 
maximum in the contour envelope detected R-waves in 
all the above mentioned types of heart cycles. The 
overall accuracy of the detection tested on 48 half-hour 
signals from MIT-BIH library was not less than 99.5 %. 
Using the same method, classification of APC and PVC 
was tested with overall accuracy of 94.6%.   

The above methods were dependent on signal 
characteristics. In practice, unsupervised methods may 
be required to detect arrhythmias in changing 
environment. Hidden Markov models are often used for 

such tasks in speech recognition [3] but also in ECG 
processing. To obtain improved results, HMM can be 
combined with wavelet transform [2].  
 
The ECG waveform and PVC’s 
 

Each individual heartbeat is comprised of a number 
of distinct cardiological stages, which in turn give rise 
to a set of distinct features in the ECG waveform. These 
features represent either depolarization (electrical 
discharging) or repolarization (electrical recharging) of 
the muscle cells in particular regions of the heart. Figure 
1 shows a human ECG waveform and the associated 
features. The standard features of the ECG waveform 
are the P wave, the QRS complex and the T wave. 
Additionally a small U wave (following the T wave) is 
occasionally present. 

 
Figure 1: ECG waveform 
 
The cardiac cycle begins with the P, which 

corresponds to the period of atrial depolarization in the 
heart. This is followed by the QRS complex, which is 
generally the most recognisable feature of an ECG 
waveform, and corresponds to the period of ventricular 
depolarization. The start and end points of the QRS 
complex are referred to as the Q and J points. The T 
wave follows the QRS complex and corresponds to the 
period of ventricular repolarization. 

 
Premature ventricular contractions (PVC’s) - these 

early depolarizations begin in the ventricle instead of 
the usual place, the sinus node. They are very common, 
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 and are sometimes perceived as a palpitation. They 
often occur without the patient being aware of it at all.   
PVC's occure in Bigeminy, Trigeminy, Quadrigeminy,  
Ventricular tachycardia, Ventricular fibrillation, etc.  

An increased frequency of PVC’s in patients with 
heart disease is statistically predictive of ventricular 
fibrillation and sudden death. In patients with some 
types of heart disease, PVC’s or ventricular tachycardia 
do indicate an increased risk of serious arrhythmias. 
Therefore this work is focused on their detection. 

 
Continuous wavelet transform 
 

In the proposed method, input data were transformed 
by continuous wavelet transform (CWT): 
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where a is a scale and b is a time shift. Time–frequency 
spectrum enables to measure time–frequency changes in 
spectral components. Interpretation of a time-frequency 
resolution by CWT is following: CWT represents time-
frequency decomposition realized by correlation of 
signal f(t) with basic functions derived from the mother 
wave ψ(t). Haar function was used as the mother 
wavelet ψ:  
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Figure 2: Haar function 

 
Scales were chosen from an interval of <1; 40>, signal f 
was extracted as a period of 100 samples (fs=360 Hz) 
around the R-wave of each QRS complex. Wavelet 
coefficients were squared and normalized. 

 
MacQueen algorithm 
  

The transformed input data were supplied to the 
discrete density HMMs (DD-HMM) in vector quantized 
form, where MacQueen algorithm (MQA) was used for 
the creation of the codebook from transformed data.  

This iteration algorithm is provided in cycles in 
following steps:  
1. step: Stochastic selection of L initial centroides v1(1), 
v2(1), . . . , vL(1).  
If we know prior information about solved problem, we 
can adapt our initial choice. 
 
2. step: The division of all vectors of the training set T 
to L aggregates T1(k), . . . , TL(k) using relation: 
 

x ∈ Tj(k) if d(x, vj(k)) ≤ d(x, vi(k)), 
 i,j= 1, . . . , L, i ≠ j 

(3) 

  
3. step: Computation of new centroides vj(k + 1) for all 
aggregates T1(k), . . . , TL(k) which minimalizes criteria:  
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is determined by equation: 
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The condition of the end of algorithm: If the 
following conditions a) or b) are fulfilled, algorithm is 
finished: 
 
a)  

( ) ( )kk jj v1v =+  for all j = 1, ..., L. (6) 

 
 
b) Decrease of total distortion J(k) is in  k-th iteration in 
relation with J(k-1) under defined threshold, where 
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In another case it continues with the second step, 

with new distribution of trained set to aggregates. 
Ti(k) is the set of vectors from the i-th aggregate in  

the k-th step, vi(k) is the centroide of the i-th aggregate 
in the k-th step, Ji(k) is a value of criterion in the i-th 
aggregate in the k-th step, and ni(k) is the number of 
vectors x in aggregate Ti in k-th step [10]. 

 
The discrete density Hidden Markov model (DD-
HMM) 

 
The Hidden Markov model is a finite state machine 

having a set of states Q, each of which is associated 
with probability distribution, an output alphabet O, 
transition probabilities A, output probabilities B, and 
initial state probabilities Π. The current state is not 
observable. Instead, each state produces an output with 
a certain probability B. The DD-HMM stage is 
proceeded by the pre-processing steps (CWT and 
MacQueen algorithm) called parameter extraction. 
Thus, the input to the DD-HMM is a discrete time 
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 sequence of parameter vectors quantized with codebook 
from transformed raw time data series.  

 
DD-HMM combined with CWT was designed to 

classify PVC and NSR cycles in long-term ECG 
recordings. The used DD-HMM had left-to-right 
topology. Number of states was 10. The first state is 
designated as the initial state and the last state as the 
output state. 

 

 
 

Figure 3: Structure of the used hidden Markov 
model. 

 
Three problems are considered fundamental in 

hidden Markov modelling applications: 
   1) Estimation of hidden Markov model parameters 
from a set of representative training data (parameters 
include state transition probabilities, output 
probabilities). 
   2) Efficient calculation of P (O|λ) - the probability 
that a given observation sequence was generated by a 
particular hidden Markov model λ. 
   3) Determination of X*, the most likely underlying 
state sequence corresponding to a given observation 
sequence 0 such that P (0| X*,λ) is maximum. 

 
The importance of solving the first problem is 

obvious; model parameters must first be estimated 
before the models can be used for classification 
purposes.  

Baum-Welch algorithm [3],[10] was used as a 
training method to find hidden Markov model 
parameters A, B, and Π with the maximum likelihood of 
generating the given symbol sequence in the 
observation vector.  

To determine the parameters of a DD-HMM it is 
first necessary to make a rough guess at what they might 
be. 

Initial parameters were: 
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The probability of state occupation must be 

calculated. This is done efficiently using the so-called 
Forward-Backward algorithm. The number of iterations 
was 10 and the number of stages was 12.  

 
The solution to the second problem is often used as 

the basis for a classification system. By computing P 
(O|λ) for each of i possible models and choosing the 
most likely model, classification can be inferred.  

An alternative classification approach uses the 
solution of the third problem to find the single best state 
sequence which maximizes P (0| X*,λ). Classification 
can then be inferred by choosing the model with the 
most likely best state sequence, which requires less 
computation than determining the most likely model.  

 
Logarithm Viterbi algorithm was used for the 

recognizing. It determines the most probable route to 
the next state, and remembers how to get there. This is 
done by considering all products of transition 
probabilities with the maximal probabilities already 
derived for the preceding step. The largest such is 
remembered, together with what provoked it. 

Scaling the computation of Viterbi algorithm to 
avoid underflow is non-trivial. However, by simply 
computing of the logarithm it is possible to avoid any 
numerical problems.  

 
Results 

 
The ECG data for experiments were taken from 

standard MIT-BIH arrhythmia database, lead MLII. 
Training and testing data was prepared automatically as 
a sequence of 100 samples around R wave, which was 
detected using CWT and the method of contour 
envelope. Transformed data (Figure 4) after vector 
quantization were processed by DD-HMMs. The 
difference in time-frequency domain between PVC’s 
and NSR is documented on the picture below. 
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Figure 4: Continuous wavelet transform of the raw time 
data series (left panel – premature ventricular 

contraction, right panel – normal sinus rhythm). 
 

Set of training sequence consisted of 180 beats (PVCs 
from signals 106, 119, 203, and NSRs from signals 100, 
106, 115). Testing set consisted of different signals with 
frequent PVCs (200, 201, 208, 214) and signals with 
frequent NSRs (101, 112, 114, 116, 117, 119, 201, 208). 
Total number of tested beats was 15330. Algorithms 
were designed in Matlab environment using statistical 
toolbox. Results are summarized in the table below. 
 
Table 1: Detection of premature ventricular contraction 
and normal sinus rhythm beats. 
 

 Number of beats Accuracy(%) 
PVC 1583 93.30 
NSR 13747 95.65 

 
Accuracy of classification (%) is defined as: 
 

10*
beats of number total

beats classifiedcorrectly  of number

 PVCNSR,

PVCNSR,

 

(11)  

 
Discussion and Conclusions 

 
An algorithm employing unsupervised way of 

classification was proposed. This work is focused on 
classification of normal sinus rhythm and premature 
ventricular contractions. There is demonstrated that 
wavelet methods can be used to generate an encoding of 
the ECG which is tuned to the unique spectral 
characteristics of the ECG waveform features. With this 
pre-processing step the performance of the models is 
significantly better than models trained on the raw time 
series data. 

Left-to-right 10-state DD-HMM and pre-processing 
of data with CWT using Haar wavelet was used. The 
algorithm was tested to distinguish between NSR and 
PVC. In the testing phase, ECG signals are classified 
using the trained models. The classification accuracy is 
95.6% for NSR beat, 93.3% for PVC beat. 

Classification of PVC’s suggests the algorithm could 
exceed results of recent systems. The popularity of 
hidden Markov modelling in speech recognition 
applications has led to the development of special 
purpose hardware implementations for Viterbi 
algorithm computation [6]-[7]. Using such hardware, an 
arrhythmia analysis system based on hidden Markov 
modelling could be operated 60 times faster than the 
recording speed.  
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