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Abstract: Sleep Apnea Syndrome (SAS) is a very 
common sleep disorder. SAS is considered as 
clinically relevant when the breath stops during 
more than 10 seconds due to different factors and 
occurs more than five times per sleep hour. In this 
paper, we present an automatic approach to sleep 
apnea classification. This system uses only 
noninvasive records of the respiratory and cardiac 
activities (Nasal  Airway Flow (NAF) and Pulse 
Transit Time (PTT)) issued by the technique of 
PolySomnoGraphy (PSG) are considered for the 
detection of the different sleep apnea syndromes: 
obstructive, central and hypopnea. Experimental 
results using clinical data are presented. 
 
Introduction 
 
Sleep Apnea Syndrome (SAS) is a very common sleep 
disorder. SAS is considered as clinically relevant when 
the breath stops during more than 10 seconds and occurs 
more than five times per sleep hour [1]. These non 
breathing episodes may sometimes occur more than 300 
times a night. Health studies affirm that more than 30 of 
these non breathing episodes per night should be 
considered abnormal [1]. There exist two kinds of 
apneic events that may cause insufficient pulmonary 
ventilation during sleep, Apnea and Hypopnea. Apnea is 
defined as the total absence of airflow, followed by the 
reduction of oxygen levels in arterial blood. The term 
hypopnea is used when the breath doesn’t stop but 
decrease over 50% of its normal value , followed by the 
reduction of oxygen levels in arterial blood. The SAS is 
present mainly in adults and in 11% of children 
especially in the male population [1, 2]. Different types 
of apnea-hypopnea may be distinguished: obstructive 
sleep apnea (OSA), central sleep apnea (CSA), and 
mixed sleep apnea (MSA).  

The treatment of SAS depends on the cause of the 
apnea. That’s why we need to make classification. 
Nowadays the sleep apneas are classified manually by 
the expert physician thanks to the nocturnal 
polysomnographic monitoring that simultaneously 
records several vital signals during the entire sleeping 
process (Nasal Air Flow (NAF), Electrocardiogram   
(ECG), Electroencephalogram (EEG), Electromyogram 
(EMG), Esophageal Pressure (Peso), Gastric Pressure 
(Pgas), Oxygen Saturation (SaO2), …) [1, 3]. A sleep 

apnea diagnosis is a very time consuming, expensive 
and tedious task consisting of expert visual evaluation 
all 10 minutes pieces of approximately 8 hour recording 
with a setting of many channels. In a previous work [3], 
it was demonstrated that sleep apnea classification may 
be done automatically using three simultaneous records 
of NAF, Peso and Pgas.  

Current techniques of investigating patients with 
suspected sleep disordered breathing are inadequate. 
The OSA episodes are not  usually difficult to detect 
even when only a basic measure of respiratory effort 
such as thoracic and abdominal movement is used. On 
the other hand, correctly identifying obstructive 
hypopneas and episodes of upper airway resistance 
needs a sensitive measure of airflow and inspiratory 
effort. The measurement of swings in pleural pressure 
by esophageal manometry is the current gold standard 
techniques for detecting changes in respiratory effort. 
However, the placement of an esophageal catheter is 
often uncomfortable and unacceptable, it may modify 
the upper airway dynamics, and some believe that it 
contributes to the sleep disturbance during the sleep 
study. Furthermore, this technique is available in only a 
proportion of sleep laboratories and, if performed, adds 
significantly to the cost of the sleep study. For all these 
reasons, other new techniques for detecting and 
classifying sleep apneas and other breathing disorders 
are developed using mainly the ECG [4] or Pulse 
Transit Time (PPT) [2, 5]. In this study, we are 
investigating the use of the neural networks based on 
simultaneous NAF and PPT records as noninvasive 
signals, to classify and detect automatically the different 
types of apnea. 

The aim of this work is to find a new technique for 
detecting and classifying automatically sleep apnea 
syndrome with the help of the PTT, to validate the use 
of PTT as a method to automatic diagnosis of sleep 
apnea syndrome.    
 
The Polysomnography (PSG) 
 

The most important diagnostic tool in any medical 
condition is for the physician to take the time to obtain a 
good history and physical examination. A chest x-ray 
along with laboratory tests are usually performed to 
evaluate other possible contributing factors, such as 
diabetes or hypothyroidism. The definitive diagnostic 
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 exam is a polysomnograph where the patient stays in a 
sleep laboratory or even at home overnight while 
measurements of his brain activity, respiratory activity, 
oxygen levels, and cardiac activity are performed (see 
Figure 1). 

 

 
 
Figure 1: A polysomnograph example. 
 

From the clinical point of view, episodes of sleep 
apnea are often detected first using only the respiration 
signals, such as nasal airflow and abdominal and 
thoracic movements. The nasal airflow measures the 
Apnea/Hypopnea Index (AHI), which indicates the 
number of apnea/hypopnea during one sleeping hour. 
The abdominal and thoracic signals show the difference 
between OSA and CSA. When the type of sleep apnea 
is not able to be determined from the PSG signals, the 
esophageal pressure signal has to be measured. This 
signal shows the diaphragm activity, but to record it 
requires the application of an invasive method, which 
increases the risk of arousal due to patient discomfort. 
The blood oxygen saturation (SaO2) signal measured by 
the oxymetry allows distinguishing between apnea and 
hypopnea. The EEG signals aim is to evaluate arousals. 
Furthermore, the physiologic range varies during sleep. 
For example, during the low stable sleep phase the 
thoracic movements increase, the abdominal movements 
decrease, and the esophageal pressure increases 50% in 
comparison to the situation of waking state.  

The PSG is uncomfortable for the patient and 
involves a considerable capital investment for the 
healthcare system in equipment, bed space and 
specialized technical support. Interpretation of the test 
data is also complex and time consuming and 
consequently the overall cost of performing a PSG is 
estimated to be around 1000-2000 dollars [6]. Each PSG 
has its own signal analysis software. Most of them use 
time domain algorithms, which examine the amplitude 
and time, with a precision of about 80 to 90%. Even if it 
is quite efficient and allows a good diagnosis in most of 
the case it is still difficult to detect the patient’s type of 
sleep apnea with good precision. Even experts do not 
always agree on the PSG results interpretation. Another 
difficulty is the dependence between the signals 
interpretation and the sleep stage and/or the 
environment. These are the most important reasons why 
automatic detection is needed.   
 
State-of- the-art and Our Previous Work  
 

To try to solve the PSG interpretation problems, 
many different approaches have been suggested. These 
approaches are based on the analysis of different PSG 
signals with the help of the most common kinds of 
artificial intelligence (AI) and stochastic methods [3, 7-

12, 18]. Each approach uses different types of signals. 
In this section, breif introduction to our previous 
approach [3] is presented.  

The classification of sleep apnea syndrome today is 
not perfect. On one hand the way to diagnose SAS can 
be improved in order to be more comfortable for the 
patient and on the other, actual systems do not correctly 
distinguish the different kinds of SAS. These are the 
main motivations for researchers to actively work in the 
createation of a new system to detect and classify the 
different types of sleep apnea syndrome.  

Obtaining non-linear analytical models for the 
different Sleep Apnea Syndromes is difficult problem. 
A good approach to be applied could be a method with 
the help of a expert system, due to their large impact in 
automated diagnostic systems. The main reasons for not 
choosing this approach are : 
• The difficulty of building and maintaining large 

rule bases; 
• The difficulty to act in real time. 

The approach presented in this paper is based on 
Artificial Neural Network. The main reason to choose 
this approach  is because it has showed good results in 
physiologic applications and in SAS applying different 
kinds of other signals than the PTT signal (which is the 
main one applied in our work) [12].  It should be noted 
that in the ANN it is important to have enough good 
data; because these data are needed in the learning 
process.  

Our previous work [3]: In this work, an automatic 
diagnosis system based on Hidden Markov Models 
(HMMs) [13] is proposed to help clinicians in the 
diagnosis of sleep apnea syndrome, Figure 2.  
 

 
 
Figure 2: Sleep apnea diagnosis system structure [3]. 
 

Some of the measurements of the respiratory activity 
issued by the technique of polysomnography (NAF, 
Peso and Pgas) are considered for off-line and on-line 
detection of the different sleep apnea syndromes: 
obstructive, central and hypopnea, Figure 3.  

 
 
 

 
Figure 3: An example of CSA event. From top to down: 
NAF, Peso and Pgas [3]. 
 

The inference method of this system translates 
parameter values into interpretations of physiological 
and pathophysiological states, Figure 4.  
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Figure 4: An example of data HMMs based 
segmentation of the air flow into different states and 
their interpretations. Event model contains three states: 
state 1:  week airflow, state 2: snoring during expiration 
and state 3: snoring during inspiration [3]. 
 

The interpretation is extended to sequences of states 
in time to obtain a state-space trajectory.  Experimental 
results using respiratory clinical data showed a good 
differentiation between the different SAS events.  The 
objective of the current and future work is to improve 
our system by replacing the invasive signals Peso and 
Pgas by a non-invasive signals such as the Pulse Transit 
Time (PTT). 
 
Pulse Transit Time  
 

The measurement of swings in pleural pressure, for 
detecting changes in respiratory effort is usually 
assessed by measuring esophageal pressure (Peso), 
trough an esophageal balloon catheter. This technique 
has several disadvantages; it causes some discomfort, 
due to the placement of the esophageal catheter, can 
lead to fragmentary sleep, and may modify the upper 
airway dynamics.  
A new noninvasive method for measuring respiratory 
effort has been proposed [2, 5]. It is based on the 
estimation of the Pulse Transit Time (PTT) signal, 
which has been demonstrated that its oscillations yield a 
valid measure of inspiratory effort [2]. The PTT signal 
is a method to measure the variations in blood pressure. 
It is the time needed for the arterial pulse pressure wave 
to travel from the aortic valve to the periphery, 
generally the ear or the finger. This time is estimated as 
the delay between the R wave in the ECG and the 
arrival of the pulse wave at the periphery as determined 
by pulse oxymetry (about 200-250 ms). We measure 
one value of PTT by heart beat. There is a link between 
the PTT and the esophageal pressure (Pes). If the 
esophageal pressure increases, then the amplitude of the 
PTT oscillations falls. A decrease of the esophageal 
pressure corresponds to an increase of the blood 
pressure (BP), which is directly due to arousals and not 
to hypoxemia. The PTT signal provides a good measure 
of respiratory effort, quantification of the obstruction, 
and therefore a classification of the type of apnea-
hypopnea. There is no respiratory effort in central 
apnea.  If there is an increase of PTT oscillations then 
there is an OSA or upper airway resistance, because the 
respiratory effort increases. If there is a decrease of PTT 
oscillations then a CSA occurs. In this work the PTT 
was estimated as the interval between the ECG R-wave 
and the point at which the pulse wave at the finger 
reached 50% amplitude, Figure 5.  

PTT = t2-t1, 
where 
t1: the point where ECG-R wave occurs, 
t2: the point at which the pulse wave (PW) reaches 50% 
amplitude (this percentage could change in each study. 
some of the more recent studies chose a percentage of 
25%).  

 

 
 
Figure 5: PTT estimation [5]. 
 

It should be emphasized that the PTT signal is not 
able to make a differentiation between apnea and 
hypopnea [2]. To be able to distinguish between these 
two apneic events we need to use another signal in 
addition. It has been decided to use the NAF, which 
allows a good distinction between apnea and hypopnea 
[3, 18].  
 
System Overview 
 

To carry out the automatic diagnostic system for 
sleep apnea classification, it was needed to realize four 
main steps, shown in Figure 6.  

 
Figure 6: System overview [18]. 
 

All these steps are described in [18]. The feature 
extraction and selection approach is one of the most 
important in the automatic diagnostic system, because 
most of the neural network accuracy depends on it. The 
ANN training is the set of examples used for learning. 
Enough data is necessary in the training to fit the 
parameters of the ANN to be efficient. The ANN testing 
is the set of examples used to assess the performance of 
the ANN. 
 
Data Acquisition 
 

The data files used for training and testing the neural 
networks are given by a sleep laboratory at the hospital 
Raymond Poincaré in France. These data files are all in 
European Data Format (EDF) and consist of three 
patients PSG record. Each record measured the different 
vital parameters: EOG, EEG, ECG, abdominal and 
thoracic movements, EMG, NAF, phonograph, pulse 
and SaO2. A more detailed description for each patient 
is presented in [18]. For reading the data, it was 
necessary to use other toolboxes: EEGLAB toolbox [13] 
and the EDF toolbox [14].  

state 2

state 1

state 3
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 Pre-processing of the data: The ECG baseline is the 
interference that appears due to different reasons, such 
as: patient movement, breathing, physical exercise, etc. 
The baseline wandering can make the inspection of the 
ECG difficult; therefore it is very important to reduce as 
much as possible its effect. The method used to remove 
baseline in this work is based on wavelet transform, 
which removes the low frequency artifacts [15]. The 
QRS detection by Tompkins and Pan, improved by 
Fokapu and Girard algorithm [16] was chosen because it 
showed the best detection accuracy.  

Feature extraction: For efficient pattern 
classification, measurements that could lead to disjoint 
sets of features vectors are desired. This point 
underlines the importance of the preprocessing and 
features extraction procedures. This section aim is to 
choose features, which will be part of the feature 
vectors. It is necessary to perform a feature selection in 
order to have only the most relevant features. 

There are two stages that must be fulfilled, the 
feature extraction stage, which decides how the features 
will be generated, and the feature selection stage, which 
decides the best amount of features to be used. In this 
work two signals are selected for features extraction: 
PTT and NAF signals.  

In order to avoid having too many inputs in the 
neural network, several windows of the signal were 
taken. According to the definition of sleep apnea 
syndrome, the length of this window should be at least 
10 seconds in order to detect apnea within a single time 
window. But in order to assure that some events are not 
missed, it is better to take a window longer than 10 
seconds. Since signals may contain short apnea or 
hypopnea episodes (lasting only several seconds) which 
are not pathological. Therefore it was decided to use a 
window of 14 seconds length. The use of a longer 
window would unnecessarily increase the complexity of 
the system.  

NAF extraction: The first approach applied for NAF 
signal extraction was the decreasing of sampling rate 
from 200 Hz to 20 Hz, in order to have less input in the 
network. This change of sampling rate was done using a 
simple moving average filter. These signals are then re-
sampled at 2 Hz using the antialiasing filter. At the end 
of all the re-sampling the selected 14 second window 
consisted only of 28 sample points for the NAF instead 
of 2,800. It has been noticed that the decreasing of 
sampling rate was not a suitable approach to be applied, 
because the data was re-sampled too much. Because of 
this re-sampling some of the information was lost. 
Therefore a new approach was needed for the features 
extraction of this signal. The most important 
information in the NAF signal is the amplitude.  This 
information can be used to determine whether normal 
breathing, apnea, or hypopnea are present. The details 
of the method used for calculating the amplitude may be 
found in [18], Figures 7. 

PTT extraction: The first approach used was based 
on re-sampling the data in the same way done as for the 
NAF signal. For the PTT signal case the re-sampling 
was performed first from 200 Hz to 22.22 Hz and at last 
to 2.469 Hz. It was obtained between 22 and 30 sample 

points. It should be noted that the PTT signal is a stair 
function and not a continuous function, i.e. the numbers 
of sample points are not the same for each part of the 
signal. This method is not suitable for the PTT signal, 
because this reduction does not keep all the information 
in the signal. Because of this a new approach called 
PTT segmentation was suggested in [18], Figure 8. Note 
that a third approach based on the PTT signal feature 
extraction that correlates with the NAF signal was 
suggested [19]. This approach calculates the PTT 
amplitude and duration of each breathing cycle. 

 

 

 
 
Figure 7 : From top to down, Maximas and minimas in a 
NAF signal for : normal, apnea and hypopnea events 
[18]. 

 

 

 

 
 
Figure 8: From top to down, PTT segmentation for : 
normal, apnea and hypopnea events [18]. 
 
Training and Testing Sets Creation 
 

The whole training is composed of noisy and non 
noisy data. In this work the noisy data is consider to be 
the one that is in REM sleep stage, because during this 
period the PTT signal is difficult to understand. Two 
training sets were created for this work, each of them 
containing 45 windows, 15 windows for each event (i.e. 
normal breathing, apnea, hypopnea) these data were 
taken from the PSG records of three patients. The 
testing set is a set of examples used only to assess the 
performance (generalization) of a fully-specified 
classifier. For testing the network performance, 36 
windows were taken, 12 windows for each event case 
(i.e. normal breathing, apnea, and hypopnea) were taken 
from the PSG records of three patients. It should be 
noted that the selected test record sections contain no 
training patterns. Three testing set were created each 
containing one class of desired outputs. For more 
details, see [18]. 
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 Table 1. ANN Input specification (Yes: used, No: not 
used). A: Average of NAF  amplitude times total 
maximum peaks, B: Average of each NAF amplitude 
duration, C: Average of PTT for each amplitude 
segmentation, D: Average of PTT  duration of each 
segmentation, E: Average of PTT amplitude for each 
breathing cycle, F: Average of each PTT amplitude 
duration. 

 
Network parameters: The network outputs were 

chosen to be binary values, coding the respiration 
patterns corresponding to the actual input training 
pattern: [1; 0; 0]: Normal breathing event, [0; 1; 0]: 
Apneic event (OSA, CSA, MA), [0; 0; 1]: Hypopnea. It 
should be noted that a hidden layer should be needed to 
add for further analysis such as classification between 
OSA, CSA or MA.  

The feature extraction and selection was used to 
build the neural network input. Four simple different 
neural networks were created using three structures, 
Figure 9. 
These structures are composed of an array of one row 
and four columns, where: LW {1, 1} = First layer 
weight coefficient, b {1} = First layer threshold, LW {1, 
2} = Second layer weight coefficient, b {2} = Second 
layer threshold. 

 

 
Figure 9: Architecture of the first neural network [18].  
 
Table 1 describes neural networks. The input vector of 
the first neural network is composed of four elements, 
that of the second  neural network is composed of two 
elements. The third and the fourth neural networks have 
three elements in their input vector.  
 
Results 
 

The feature extraction and selection helped us to 
build these neural network inputs. The testing set used 
was the same for all the neural networks in order to 
compare the results between them. Table 2 (1st Neural 
net.) shows that, the first neural network had a problem 
differentiating between normal breathing and hypopnea. 
The reason is that the average of NAF amplitude in 
these cases is almost the same as the one in a normal 
breathing event or a hypopnea event. One of the reasons 
could be that one of the elements of the neural network 
input, listed in Table 1, is the average of NAF amplitude 

multiply by the total amount of maximum peaks in 14 
second window. The reason to choose this element to be 
part of the neural network input is that when the 
window contains the beginning or the end of an apneic 
event, it can be taken the first or last point from a 
normal breathing. In order to avoid the misclassification 
between apnea and normal breathing the amplitude 
average was multiplied by the amount of maximum 
peaks presented on the window, so this assures us to 
have a good differentiation between the normal 
breathing and apnea. However, this multiplication could 
lead to a misclassification between apnea and hypopnea. 
Another way of solving these misclassifications is 
modifying the window start time. From the left part of 
Figure 13, it could be seen that the amplitude average 
multiplied by the amount of peaks can still give a result 
similar for the hypopnea case. It may also appear a 
misclassification between normal breathing and 
hypopnea, because sometimes the 14 second window 
contains more maximum peaks for the hypopnea event 
than the normal breathing event. The replacement of 
this element to the average of NAF amplitude would not 
help to solve those misclassifications. Instead, it showed 
worst results. 

From Table 2 (2nd neural net.), it can be seen that 
some apneic events were misclassified as hypopneic 
events. One of the reasons of these misclassifications 
was mentioned above. Table 2 (3rd neural net.) shows 
also some hypopneic events misclassification. The third 
neural network was created to show that the window 
start time affects in the misclassifications. Table 2 (4th 
neural net.) shows a small misclassification between an 
apneic event and a hypopneic event and yields better 
results than the 3rd neural network. This proofs that the 
window start time affects the neural networks inputs. 
 
Table 2. Neural networks accuracy results for the three 
events: Normal, Apnea and Hypopnea.  
 
Classification Normal  Apnea Hypopnea 
1st neural net. 75% 83.33% 75% 
2nd neural net. 100% 75% 91.67% 
3rd neural net. 100% 100% 66.67% 
4th neural net. 100% 91.66% 100% 

 
To make a better comparison among all of the neural 

networks, their diagnostic accuracy [18, 19] is 
calculated for each of them. The fourth neural network 
presents the best diagnostic accuracy of 99.97%, 
followed by the second and third ones with an accuracy 
of 94.50%. The first neural network has an accuracy of 
86.10%. These proves that the window start time affects 
the neural network accuracy, the extraction 
segmentation approach for the PTT signal is better than 
the amplitude extraction of each breathing cycle 
approach for the PTT. 
 
Table 3. Diagnostic accuracy calculation for each ANN. 
 
Calculations 1st ANN 2nd ANN 3rd ANN 4th ANN 
Diagnostic 
Accuracy 

86.10% 94.50% 94.50% 99.97% 

 

ANN Input 1st  Net 2nd   Net 3rd  Net 4th Net 
A Yes Yes Yes Yes 
B Yes No No No 
C No Yes Yes Yes 
D No No Yes Yes 
E Yes No No No 
F Yes No No No 
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 Conclusions 
 

In this preliminary work, our objective was to  
examine the possibility to use the NAF and PTT records  
for automatic sleep apnea classification. 
We manage to make a differentiation between normal 
breathing, apnea, and hypopnea.  

The first neural network showed worse results than 
the third neural network. This proves that the extraction 
by segmentation approach for the PTT signal is better 
than the amplitude extraction [18] of each breathing 
cycle for the PTT.  

The feature extraction and selection of the PTT 
signal and the NAF signal was the most difficult part to 
implement in the artificial neural network design. We 
believed that further improvements can be achieved in 
order to get better input data for neural network. This 
part is one of the most important, because most of the 
neural network accuracy depends on the step of feature 
extraction and selection. 

The authors are presently investigating the use of 
Hidden Markov Models (HMMs) and make some 
comparisons between the approaches presented in this 
present work and in [3]. 
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