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Abstract: Managing disorders in critical care is a
challenging task, as when a disorder is missed and
thus treatment is delayed this may be the cause of
death of a patient, as many of the patients in critical
care are severely ill. Ventilator-associated pneumonia
occurs in patients who are mechanically ventilated in
intensive care units. As diagnosing and treating in-
fections involves reasoning with uncertainty, we used
a Bayesian network as our primary tool for build-
ing a decision-support system. Prescribing antimi-
crobial treatment is a trade-off between minimising
antimicrobial spectrum and maximising coverage of
pathogens to be treated. To support clinicians in per-
forming their task, the Bayesian network computes
optimal treatment for a patient given colonisation
data. We analysed the therapeutic performance of the
Bayesian network by comparing its output to the gold
standard, i.e., antibiotic treatment prescribed by two
infectious-disease specialists. It is shown that by us-
ing the concept of the Closed-World Assumption with
respect to colonisation data it was possible to achieve
accurate results.

Introduction

Patients who are admitted to the Intensive Care Unit
(ICU) are often severely ill and are prone to colonisa-
tion by hospital-acquired (nosocomial) bacteria. Some
of these bacteria are more pathogenic1 than others. Our
medical domain is restricted to mechanically ventilated
patients who are at risk of developing an infection of
the lower respiratory tract. This infection is called
ventilator-associated pneumonia, or VAP for short. To
treat pathogens that have caused an infection, antimicro-
bial treatment is needed.

Prescribing optimal treatment is a difficult task for
physicians. They have the tendency to prescribe broad
spectrum antibiotics to cover as much pathogens as pos-
sible. However, this stimulates the development of re-
sistance of pathogens to specific antibiotics, which will
eventually reduce the effectiveness of these antibiotics in
time [1]. Therefore, more and more research is being per-

1Pathogenicity is the ability of an organism of causing an individual
to get ill.

formed in the area of standardisation of antibiotic pre-
scription; guidelines and protocols are well-known prac-
tical outcomes of such efforts. In our research, we fo-
cus on supporting physicians in prescribing antimicrobial
treatment for ICU patients by means of a Bayesian net-
work (BN) augmented by a decision-theoretic model [2].
Bayesian networks have been introduced in the 1980s as
a formalism to compactly represent and reason efficiently
with joint probability distributions. Bayesian networks
are in particular well suited for the representation of un-
certain causal relations within a specific domain of exper-
tise.

This paper describes our attempt to improve the ther-
apeutic performance of our Bayesian network. We used
real patient data to test the accuracy of the network in se-
lecting optimal antimicrobial treatment. It is shown that
performance improvement can be achieved by using the
concept of the Closed-World Assumption (CWA) from
database theory and logic [3].

The paper is organised as follows: Bayesian networks
and the Bayesian network for the treatment of VAP we
have developed previously are first described, followed
by a brief description of the basic ideas underlying the
CWA. The exploitation of the CWA in the context of
probability theory is studied next. The practical useful-
ness of these ideas are subsequently investigated for the
Bayesian network concerning VAP. The paper is rounded
off by some conclusions.

Materials and Methods

A Bayesian network for VAP

Formally, aBayesian network, BN for short, is defined as
a pairB = (G,Pr), whereG= (V(G),A(G)) is a directed
acyclic graph with a set of verticesV(G) = {V1, . . . ,Vn},
corresponding one to one to stochastic variables, here
denoted by the same indexed letters, and a set of arcs
A(G)⊆ V(G)×V(G), and Pr is a joint probability distri-
bution Pr(V1, . . . ,Vn) representing statistical dependences
and independences among the variables, respecting the
independences represented in the graph, as follows:

Pr(V1, . . . ,Vn) =
n

∏
i=1

Pr(Vi | π(Vi)),
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Figure 1: Diagnostic part of the Bayesian network; the
‘ PNEUMONIA’ vertex links this diagnostic part and the
therapeutic part together.

whereπ(Vi) stands for the variables corresponding to the
parents of vertexVi . In the following, upper-case letters,
such asX, stand for (free) variables, whereas lower-case
letters, such asx (short forX = yes) or¬x (short forX =
no), stand for (collections) of values of variables.

The formalism of BNs supports the kind of reasoning
under uncertainty that is typical for medicine when deal-
ing with diagnosis, treatment selection and planning, and
prediction of prognosis. A Bayesian-network model con-
cerning VAP was previously constructed with the help of
two infectious-disease domain experts, who helped in es-
tablishing the network’s structure and estimated all con-
ditional probabilities required [2]. This Bayesian network
can be seen as consisting of a diagnostic part, modelling
signs and symptoms of VAP, and a therapeutic part, that
models the temporal evolution of the disease based on
duration of stay in the ICU and duration of mechanical
ventilation. These parts are linked together through the
‘ PNEUMONIA’ vertex (the ‘PNEUMONIA’ vertex has one
incoming arc from the therapeutic part).

Entities that play an important role in the develop-
ment of VAP and that belong to thediagnostic partof the
Bayesian network for VAP include: the duration ofme-
chanical ventilation, the amount ofsputum, radiological
signs, i.e., whether the chest radiograph shows signs of an
infection,body temperatureof the patient and the number
of leukocytes(white blood cells) [4]. Each of these enti-
ties is modelled as one vertex in the diagnostic part of the
Bayesian network for VAP, as shown in Figure 1.

The therapeutic partof the network models the situ-
ation of a patient from the colonisation and development
of pneumonia as temporal processes, to the selection
of optimal antimicrobial treatment. We have modelled
seven groups of microorganisms, each as one vertex in
the Bayesian network. These microorganisms are: Pseu-
domonas aeruginosa; Haemophilus influenzae; Strepto-
coccus pneumoniae; two groups of Enterobacteriaceae,
depending on which antibiotics these are susceptible to;
Staphylococcus aureus and Acinetobacter spp. Also, for
each modelled microorganism the pathogenicity was in-
cluded in the model; the pathogenicities were assumed to

be equal for each microorganism.
The presence of certain bacteria is influenced by an-

timicrobial therapy. Each microorganism is suscepti-
ble2 to some particular antibiotics, and these suscepti-
bilities were taken into account while constructing the
model. The infectious-disease experts assigned utilities3

to each combination of microorganism(s) and antimicro-
bial drug(s) using a decision-theoretic model [5].

Modelling joint interactions

To model the probabilistic interaction of the various
pathogens on the likelihood of development of pneumo-
nia and overall susceptibility, the notion ofcausal inde-
pendencewas used [6, 7]. For example, the interaction
among susceptibility or coverage variables, as shown in
Figure 2, was expressed by a logical-AND gate. The
probability distribution of the vertex that represents the
overall susceptibility or coverage is expressed as thecon-
junctive effectof the seven different pathogens, which can
be defined formally as follows:

Pr(coverage| at) =
n

∏
i=1

Pr(susceptibility-pathogeni | at)

(1)
Using the logical-AND gate, the model tries to cover
all pathogens, i.e., the probability Pr(coverage| at) for
all possible antimicrobial treatment values ‘at’ of the
variable ‘ANTIBIOTICS’ is computed. This is balanced
against the broadness of the antimicrobial spectrum.
Thus, there is a trade-off between coverage and broadness
of antimicrobial spectrum of the prescribed treatment.

Preliminary evaluation

Preliminary evaluation of the performance of the current
network model learnt us that the model, generally, ad-
vised broad spectrum antibiotics, even when the patient
was only colonised by one or two pathogens. When
prescribing antibiotics, the spectrum should be chosen
based on information concerning the susceptibilities of
causative pathogens. In general, when increasing the
number of different possible causative pathogens, there
will be a need for broader coverage and, thus, more dif-
ferent antibiotics. If the patient is only infected by one or
two pathogens, prescription of one narrow to intermedi-
ate spectrum antibiotic is often sufficient. Our conclusion
was that there was room for improvement of the model.
More detailed evaluation results that support this claim
are discussed below.

The closed-world assumption

In this paper, we study the idea from Artificial Intelli-
gence (AI) concerning the assumption that unknown, ab-
sent data can be taken as being negative. We investigate

2Susceptibility, here, is stated as the sensitivity to or degree to which
a microorganism is affected by treatment with a specific antibiotic.

3Utility: by definition a quantitative measure of the strength of the
preference for an outcome.
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Figure 2: Most important fragment of the therapeutic part
of the Bayesian network. PA: Pseudomonas aeruginosa;
HI: Haemophilus influenzae; SP: Streptococcus pneumo-
niae; Ent{1,2}: Enterobacteriaceae{1,2}; AC: Acineto-
bacter spp.; SA: Staphylococcus aureus. Each pathogen
is susceptible (suscept.) to particular antibiotics and an
optimal coverage of the pathogens is what the model tries
to achieve.

whether this idea can have a positive impact on the per-
formance of a Bayesian network. We first describe the
basic ideas from the perspective of AI, followed by how
these ideas can be exploited in the context of probability
theory.

A typical logical AI system stores its knowledge
about its domain as a finite setΓ of first-order logic for-
mulas. To answer queries, the system will have to decide
whether or not a formula, sayϕ, can be obtained by per-
forming logical deductions onΓ; formally: Γ � ϕ, mean-
ing thatϕ is a logical consequence of our knowledge rep-
resented in theknowledge baseΓ. A typical use of this
logical approach is in rule-based expert systems, where
Γ is a collection of logical rules, andϕ could be some-
thing such as the diagnosis of a disease based on entered
patient findingsor evidence E:

Γ∪E � ϕ

Thus, the knowledge baseΓ is static, and augmented by
non-static, patient-specific findingsE to conclude about
a diseaseϕ, which is then interpreted as a diagnosis, or
prognosis, etc., depending on the medical purpose of the
knowledge inΓ.

This model has been proven to be quite useful for var-
ious tasks requiring knowledge about a domain, however,
it has its limitations. Let us assume that what we know
about our world is stored inΓ. When we want to know
something about, for example, a certainϕ, we search in
Γ for information concerning thisϕ. It might be the case
that it is not possible to concludeϕ from Γ, indicating that
somehow our knowledge baseΓ is incomplete. Clearly,
this is often the case, as it may be impossible to ensure
that a knowledge base offers a complete coverage of all
the knowledge in a domain of concern. The assumption
that a knowledge base is incomplete is known as theopen
world assumption[3, 8].

However, when the knowledge baseΓ cannot tell us
anything aboutϕ, we may also assume that the negation
of ϕ, i.e., ¬ϕ, holds and can be added toΓ. Formally,
we have that ifΓ 2 ϕ, we assume that¬ϕ is a member
of a set of assumptions or beliefsB, i.e.,B is the smallest
set of negative assumptions or beliefs, such that for each
ψ ∈ B : Γ 2 ψ andΓ 2 ¬ψ, whereψ ≡ ¬ϕ. Now, if it is
the case that

Γ∪B � ¬ϕ

then we say that¬ϕ is in the CWA-augmented knowledge
baseΓ, formally¬ϕ ∈CWA(Γ). This is called theclosed
world assumption[3, 8]. It is used to provide a default,
negative solution in the absence of a positive solution.

There are at least two situations where the CWA is
used. The first is where it is assumed that a knowledge
base contains all relevant facts. This is common in cor-
porate databases. That is, the information it contains is
assumed to be complete. The second situation is where
it is known that the knowledge base is incomplete (does
not have enough information to produce an answer to a
question) and a decision must be made without complete
information — a situation familiar to most people. The
closed world assumption is designed to solve a reasoning
problems in both of these situations.

In medicine, it is unlikely that all information con-
cerning a patient is known, as only the results of a se-
lected set of tests are known. Thus, it is common to as-
sume that unless explicitly stated, everything not known
about a patient is normal. For example, if the blood pres-
sure of a patient is unknown, and there are no indications
that absence of information concerning the blood pres-
sure may be a medical mistake, it is normally assumed
that the blood pressure isnot high. Hence, the CWA in
medicine is commonly used to interpret data concerning
a patient; without it, it is hard to draw clear conclusions.
Here we, therefore, assume that the CWA is only used to
handle patient data. This means that in reasoning with
logical rules in a knowledge baseΓ and patient findings
E, such that

Γ∪E � ϕ

we compute the CWA, not of the knowledge baseΓ, but
of the set of patient findingsE in the context ofΓ. Hence,
logical reasoning in medicine can be formalised as rea-
soning according to the following definition

Γ∪CWAΓ(E) � ψ

where if¬ϕ ∈ CWAΓ(E): Γ∪E 2 ϕ, Γ∪E 2 ¬ϕ and
ψ ≡ ¬ϕ.

The CWA and probability theory

Despite the fact that the CWA, as described above, is use-
ful in a medical context, a limitation is that, being fully
based on logic, it is unable to deal with uncertainty. Thus,
there is a need to extend the ideas described above to-
wards probability theory.

In the context of Bayesian networks, the use of the
CWA is comparable, but somewhat different. We use as
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 much information as available from our clinical database
to fill in the nodes of the network. The information used
for inference in the network is calledevidence. Let us
assumed that we have particular evidencee concerning
a patient, excluding a variableX, such that 0< Pr(X =
yes| e) < 1. This is interpreted as saying thatX is not
fully known. However, if variableX is potentially part
of the patient evidence, then we may, adopting the CWA,
assume thatX = noholds, thus as a consequence:

Pr(X = yes| e∪{X = no}) = 0

We have that CWAPr(e) = e∪{X = no}. This means that
we always compute

Pr(X | CWAPr(E))

for any set of evidenceE.
With regard to our Bayesian network about VAP, we

have applied the CWA to data of sputum cultures, but
in a restrictive fashion. When no pathogens are found,
but a sputum culture has been taken, it is assumed that all
pathogens are absent. This is a negative test result and not
really an instance of the CWA. When culture data is not
missing for a specific patient day, and one or more of the
seven possible groups of pathogens are found positive, we
deduce that the other groups of pathogens will be absent.
These negative culture data will then augment the patient
evidencee, and this is an instance of the CWA.

Evaluation of therapeutic performance

The performance of the Bayesian network, before and af-
ter taking into account the CWA for probability theory,
was subsequently evaluated. The following approach was
taken:

(1) We first assume that when a patient is colonised by
one or more microorganisms on a given daytc, that
on the three successive days, i.e.tc+1, tc+2, tc+3,
this patient is still colonised. This assumption seems
valid, as (1) clinical cultures usually are not per-
formed daily and (2) when treated with antibiotics,
microorganisms are not eradicated immediately.

(2) Secondly, we interpret the clinical culture data as fol-
lows:
(a) When no microorganisms are found, this is in-

terpreted as anegativeresult for the seven nodes
in the network we fill in the evidence: ‘colonisa-
tion by pathogeni = no’, 1≤ i ≤ 7.

(b) When one or more pathogens are found posi-
tive in the culture, these pathogens are processed
in the network as being present; for the other
pathogens, however, we assume that they are ab-
sent. This is in instance of the CWA in probabil-
ity theory.

(c) When on a specific day no cultures were per-
formed, i.e. culture data is missing, no evidence
is filled in in the network.

H. influenzae                                                                                                                                                
Acinetobacter                                      Enterobacteriaceae1                                 P. aeruginosa

                       VAP + treatment episode

    t_0                                                                  t_VAP                                             t_VAP + 3                                                             t_d

Figure 3: Example time line. Ont0, clinical cultures
showed that this patient was colonised with H. influen-
zae and Acinetobacter spp. Four days later, here denoted
by tVAP, the patient was diagnosed with VAP and antimi-
crobial treatment was started to cover the Enterobacteri-
aceae1 pathogen and on day 3 of the treatment pathogen
P. aeruginosa. At time pointtd, the patient was discharged
from the ICU.
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Figure 4: The therapeutic part of the network includ-
ing clinical evidence as shown on the time line on the
third day of treatment (tVAP+3). Positive evidence is de-
noted by the darkest shaded ellipses, whereas the lightest
shaded ellipses denote the pathogens which are assumed
negative, using the CWA.

To test whether making these assumptions improves the
therapeutic performance of the network, we used a tem-
poral database of 17710 records for this purpose. This
database contains data for more than 2000 patients, ad-
mitted to the ICU between 1999 and 2002 in the Univer-
sity Medical Center Utrecht, The Netherlands. For 157
of these 17710 episodes, a VAP was diagnosed accord-
ing to the judgment of two infectious-disease specialists
(IDS). During the period of seven days from time-point
of diagnosis, the patient is treated with antibiotics. When
the number of days after the day of VAP is less than 7, we
assume that this patient recovered, or died. See Figure 3
for an example of a time line which shows the evidence
and actions for a patient from the time point of admission
to the ICU until the time point of discharge from the ICU.
Using the CWA and the clinical evidence as shown on the
time line, on daytVAP+ 3, i.e. on the third day of treat-
ing this VAP patient, the network would look as shown in
Figure 4.

Results

Two infectious-disease specialists selected optimal an-
timicrobial treatment for the same patient data as we used
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 Table 1: Gold standard. P1 and P2 represent the causative
pathogens. Abbreviations used for the pathogens: SA:
S. aureus; SP: S. pneumoniae; HI: H. influenzae; En1:
Enterobacteriaceae1; En2: Enterobacteriaceae2; AB:
Acinetobacter; PS: P. aeruginosa. Freq. stands for ‘fre-
quency’. Abbreviations for antibiotic spectrum: v = very
narrow; n = narrow; i = intermediate; b = broad.

P1 P2 Freq. Antibiotics Spectrum
SA 25 Floxapen vn
SP 4 Penicylin vn
HI 8 Augmentin n

En1 En2 4 Ceftriaxone n
En2 SA 4 Ceftriaxone n
SA SP 3 Floxapen vn
HI SP 6 Augmentin n

En1 27 Ceftriaxone n
En2 18 Ceftriaxone n
SA HI 5 Ceftriaxone n
AB En1 3 Ceftriaxone n
PA 19 Ceftazidime i
En2 AB 3 Ceftriaxone n
HI PA 1 Ceftazidime i

En2 SP 1 Cotrimoxazol n
PA En2 5 Ciproxin b
AB SA 1 Cotrimoxazol n
PA En1 3 Ceftazidime i
En1 HI 2 Cotrimoxazol n
PA AB 1 Ceftazidime i
SA PA 1 Tazocin b
SA En1 2 Ceftriaxone n
AB 6 Cotrimoxazol n
En2 HI 1 Ceftriaxone n

4 Cotrimoxazol n

in our analysis. By doing so, we were able to compare
their therapy advice, here considered thegold standard,
to the treatment selected by the Bayesian network. The
information shown in Table 1 can be interpreted as fol-
lows: each combination of causative pathogens was put
in the first column. The second column denotes the num-
ber of occurrences of each combination, adding up to the
total number of VAP patients, i.e., 157. The third column
is the antibiotic treatment, prescribed by the infectious-
disease experts. Broadness of spectrum, matching to the
the treatment, can be found in the last column. The re-
sults of the evaluation of the Bayesian network, with and
without using the CWA, are shown in Table 2.

To be able to draw conclusions from Tables 1 and 2,
we have compared them. We have done this in such a
way that we are able to say for each group of causative
pathogens whether the advised antibiotics by the models
are right or wrong. Wrong here means that the antibiotic
spectrum, as advised by one of the two interpretations of
the Bayesian network, is either too narrow or too broad.
Table 3 summarises the results of this comparison.

Table 2: Results. The column ‘Old’ denotes the results
for the original Bayesian network, whereas ‘New’ gives
information about the performance of the Bayesian net-
work, when using the CWA. Abbreviations for antibiotic
spectrum: v = very narrow; n = narrow; i = intermediate;
b = broad.

Antibiotics & Spectrum
Freq. Old SP New (CWA) SP

25 Clinda+aztr i Floxapen vn
4 Clinda+aztr i Peniciline vn
8 Clinda+aztr i Erythromycin vn
4 Clinda+aztr i Clinda+aztr i
4 Clinda+aztr i Clinda+aztr i
3 Clinda+aztr i Floxapen vn
6 Clinda+aztr i Erythromycin vn
27 Meropenem b Ceftriaxone n
18 Clinda+aztr i Clinda+aztr i
5 Clinda+aztr i Ceftriaxone n
3 Meropenem b Meropenem b
19 Ceftazidime i Ceftazidime i
3 Meropenem b Cotrimoxazol n
1 Ceftazidime i Ceftazidime i
1 Clinda+aztr i Clinda+aztr i
5 Clinda+aztr i Clinda+aztr i
1 Meropenem b Cotrimoxazol n
3 Ceftazidime i Ceftazidime i
2 Meropenem b Ceftriaxone n
1 Meropenem b Ceftazidime i
1 Clinda+aztr i Clinda+aztr i
2 Meropenem b Ceftriaxone n
6 Clinda+aztr i Cotrimoxazol n
1 Meropenem b Clinda+aztr i
4 Clinda+aztr i Metronidazole vn

Conclusions and Discussion

In this paper, we have described a way to improve the
performance of a Bayesian network for treatment selec-
tion in patients with VAP. The way in which data about
sputum cultures was interpreted previously gave rise to
the selection of broad-spectrum antibiotics in most of the
cases. This is also due to the fact that overall susceptibil-
ity is modelled by means of a logical-AND gate. How-
ever, prescription of unnecessary broad-spectrum antibi-
otics is undesirable from a medical point of view, as
it stimulates the development of antibiotic resistance in
pathogens. We subsequently adopted the closed-world
assumption in interpreting sputum-culture data when fill-
ing in evidence in the Bayesian network, which resulted
in an improved therapeutic performance of the model.
When using the CWA, the percentage of patients for
whom a correct antibiotic therapy was advised by the
Bayesian network, improved by 50%. We conclude that
the CWA, which was originally developed in the context
of relational database theory, may also be useful when
interpreting clinical data using a Bayesian network.

In the near future, we plan to investigate ways to
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 Table 3: Absolute and relative numbers of incorrectly and
correctly advised antibiotics for both the original and new
Bayesian-network model interpretation.

Model Incorrect Correct
too narrow too broad

Original 6 (4%) 129 (82%) 22 (14%)
New (CWA) 23 (14%) 31 (20%) 103 (66%)

model interaction among variables in a more natural way
using causal independence models [6].
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