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Abstract: Recent results of X-Ray crystallography 
have provided important information for functional 
studies of membrane ion channels based on 
computer simulations. Because of the large number 
of atoms that constitute the channel proteins, it is 
prohibitive to approach functional studies using 
molecular dynamics. To overcome the current 
computational limit we propose a  method based on 
the Poisson, Nernst, Planck electro-diffusion theory. 
The basic problem with this approach, is the 
diffusion coefficients setting. We tested two 
possibilities: i) space-independent diffusion 
coefficients, set to experimental values; ii) space-
dependent diffusion coefficients, set according to 
molecular dynamic simulations. A good accordance 
with the experimental data was obtained with the 
last setting. 
  
Introduction 
 

Ion channels are protein molecules embedded in the 
lipid bilayer of the cell membranes. They control the ion 
fluxes through these membranes playing a central role 
in several cellular functions, i.e. the cellular excitability 
[1]. In the last few years, thanks to the structural data 
provided by X-ray crystallography, it has become 
possible to analyze the channels at atomic level. In 
particular, the atomic structures of several bacterial ion 
channels selectively permeable to potassium ions – 
KcsA [2], MthK [3], and KvAP [4] - were revealed. The 
peculiar characteristic of potassium channels is the 
ability to conduct at a rate close to the diffusion limit 
(108 ions/s) keeping a high selectivity (potassium 
permeability is 104 fold sodium permeability) [1]. The 
knowledge of the KcsA atomic structure, the first 
potassium channel crystallized, has permitted to reviles 
the molecular mechanism underlying these complex 
channel functions. Molecular dynamic simulations were 
particularly important for these studies [5-7]. Due to the 
huge computational resources needed, these dynamic 
simulations are restricted to the nanosecond time-scale. 
Ion conduction through an ion channel is a far slower 
process, millisecond time-scale. Thus, to compute the 
electrical current through a channel, a simplified 
mathematical model of ion conduction is needed. Since 
channel current, so channel conductance, is the main 
functional characteristic of an ion channel, and it is the 

easiest to value experimentally, a method to compute 
currents starting from the molecular structure is 
nowadays one of the main topic in ion channel studying.   

Most of the complexity in ion channel dynamic 
simulations lies in the high number of water molecules. 
Consequently, a continuum description of the solvent is 
the first important step to reduce the computational 
resources needed. Brownian dynamic simulations are a 
possible approach based on this idea. In a Brownian 
dynamic simulation only ions preserved their discrete 
nature, the solvent is described by diffusion coefficients 
and stochastic collisions with ions and the effect of the 
protein by a potential energy function. The potential 
energy function and the diffusion coefficients are the 
basic elements of this method, and to avoid arbitrariness 
in the mathematical model these functions are computed 
starting from the atomic structure of the channel. A 
Brownian dynamic simulation based on this approach 
was tested by Berneche et al. on KcsA [8], getting a 
good accordance with the experimental data. In this 
study we present a further simplified approach based on 
the Poisson, Nernst, Planck (PNP) theory of electro-
diffusion, which use a continuum description of the 
whole system. The limited computational resources 
needed by this kind of approach, made it the perfect tool 
to analyze systematically the effects of structural 
changes on channel functioning. Channel structural 
changes, due to protein channel mutations, are common 
in nature, and sometimes connected with diseases . The 
importance of a mathematical model to analyze these 
diseases justifies the development of a model of ion 
conduction as simple as possible.  
 
Poisson-Nernst-Planck theory 
 

The PNP electro-diffusion theory describes a steady 
state condition for a system of mobile charges. In 
membrane channels, the mobile charges are the different 
ion species in solution, which space distributions are 
described by the concentrations )(rCs (subscript s  
marks the s-th ion specie; r  is the space position). 
Assuming the electric field as the only driving force 
acting on ions, the steady state flux of the s-th ion specie 
has the form: 
 

)()()()()()( rezrCrrCrDrJ ssssss ψµ ∇−∇−=
 

(1) 
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where )(rD s , )(rsµ , )(rzs are respectively diffusion 
coefficient, mobility and valence of the s-th ion specie; 
e  is the elementary charge and ψ  the electrostatic 
potential. The first term of (1), which is proportional to 
the concentration gradient, is due to diffusion processes, 
while the last is produced by the electric field. Since the 
PNP theory describes a steady state condition, fluxes are 
time independent, and in virtue of the mass conservation 
law, the divergence of )(rJ s  is zero. This gives the set 
of differential equations: 
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where N  is the number of ion species, Bk  the 
Boltzmann’s constant and T  the absolute temperature. 
In (2) the Einstein’s relation between diffusion 
coefficient and ion mobility, TkD B=/µ , was 
introduced. To complete the mathematical model it is 
necessary to define how electrostatic potential and ion 
concentrations are connected. This relation may be 
defined by the Poisson’s equation: 
 

[ ] ∑
=
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where )(rε  is the dielectric constant and )(rρ  the 
charge distribution of the protein atoms, that differently 
from ion charge distribution is assumed fixed in the 
space. 

In the present study we included in the water 
solution only two monovalent ion species: one positive 
( +=s ) and one negative ( −=s ). Then, the PNP 
differential equation set (2) and (3) is reduced to: 
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[ ] )]()([)()()( rCrCerrrdiv −+ −−−=∇ ρψε  (5) 

 
Once solved these equations, as described in the next 
section, ion concentrations and electrostatic potential in 
the space are obtained. Afterwards, the ion fluxes in the 
channel, and so the electrical current, can be computed 
by (1). 
 
Method 
 

The differential equations (4) and (5) were 
numerically solved on a cubic volume formed by 2003 

cubic grid elements (the side of the grid element was 0.5 
Å). The cubic volume was divided in three distinct sub-
volumes: the ion channel, the membrane and the water 
solution. The position, the radius and the partial charge 
of all the atoms made up the ion channel sub-volume. 
Channel was discretized on the grid by using the 
discretization algorithm implemented in DELPHI v.4 
[9], a well-known Poisson-Boltzmann equation solver. 
The channel was placed with its geometric centre in the 
centre of the cube and with the pore axis orthogonal to 
the upper and lower faces. The extracellular side of the 
channel pointed to the upper face. The height of cube  
was chosen double of the channel length along the pore 
axis (z axis). To separate extra and intra cellular spaces, 
a sub-volume surrounding the channel and extending 
between two planes orthogonal to the pore axis was 
introduced. This volume simulated the lipid bilayer of 
the cell membrane. The water solution spread all over 
the volume not occupied by the channel and by the 
membrane. It was characterized by two space-dependent 
diffusion coefficients, one for each ionic specie. A 
specific dielectric constant was assigned to water 
solution, membrane and channel sub-volumes. 

The Poisson’s equation (5) was solved in the whole 
volume, while the mass conservation equations (4) were 
solved in the water solution only. As boundary 
conditions for the Poisson’s equation we assigned the 
electrostatic potential on the six faces of cube. The 
potential was set to 0 on the upper face, whereas the  
membrane potential value ( mV ) to be simulated was 
applied on the lower face. On the side faces a linear 
interpolation between 0 and mV  was used. Two 
different boundary conditions were assigned for the 
mass conservation equations. On the upper and lower 
faces the boundary conditions were the ion 
concentrations to be simulated. On both faces anion and 
cation concentrations were set equal, to have electrically 
neutral boundaries. Boundary conditions on the side 
faces and at the separation surface with channel and 
membrane were: 
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where n̂  is the surface normal vector. In this way no ion 
flux was allowed through these surfaces. 

The differential equation set was solved by an 
iterative scheme. The electrostatic potential was first 
computed solving the Poisson’s equation with ion 
concentrations set to zero. This potential was used to 
compute ion concentrations by the solution of mass 
conservation equations, then the new concentrations 
were used to update the electrostatic potential. This 
procedure was repeated until a self-consistent solution 
was found. The convergence was tested by the root 
mean square deviation between two successive 
iterations. All the differential equations were solved as 
described in the Appendix. 
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 KcsA channel 
 

KcsA channel was used to test the algorithm.  KcsA 
is an ion channel selectively permeable to potassium 
ions of the bacterium Streptomyces lividans. It is made 
by four identical subunits, symmetrically placed around 
the channel axis. Each subunit consists of 160 amino 
acids and is characterized by three α helix structures - 
the outer helix, the pore helix and the inner helix - 
placed like in figure 1. On the extracellular side the 
conduction pathway is lined by the carbonyl oxygens of 
the amino acid sequence TVGYG, one from each 
subunit. This region, named selectivity filter, is 16 Å 
long with a mean radius of 1.4 Å and it is widely 
conserved among different potassium channels. 
Experimental data  and molecular dynamic simulations 
[5;10;11] have revealed the presence of four ion binding 
sites inside the selectivity filter, named respectively S1, 
S2, S3, and S4 (Figure 1). Below the selectivity filter 
the channel opens in a wide chamber with a mean radius 
of 6Å connected to the intracellular space by a 15 Å 
long hydrophobic pore. Both the chamber and the 
hydrophobic pore are lined by the four inner helixes. 
 

 
Figure 1: KcsA channel, side view. Only two of the 
four subunits are shown. Four potassium ions are 
included in the selectivity filter at the binding sites S1-
S4, numbered starting from the top (extracellular 
side).  
 

The three dimensional atomic coordinates of the 
KcsA channel were taken from the crystallographic 
structure determined at 2 Å resolution by Y. Zhou et al. 
[12] (file 1K4C.pdb of the Protein Data Bank [13]). The 
atomic coordinates of the first 22 amino acids at the N 
terminal and of the last 45 at the C terminal were not 
experimentally determined. Since both C and N terminal 
are located in the cytoplasm, far from the conduction 
pathway, these amino acids are not crucial for the 
present study and therefore, they were not included in 
the channel model. Side chains with missing atoms were 
completed using ideal internal coordinates from the 
AMBER force field [14]. AMBER force field was used 
to define atomic radii and partial charges too. Since the 
experimental structure of KcsA corresponds to a closed 
state [3], we needed to compute a structure of the 

channel in an opened state. The structure of MthK [15], 
a potassium channel crystallized in an opened state, was 
used for this purpose. The only structural difference 
between KcsA and MthK is the inner helixes 
orientation. In KcsA these helixes are close together, 
reducing the hydrophobic pore radius to 0.5 Å, and thus 
preventing ion fluxes; in MthK an outward movement 
of the inner helixes, realized by bending around hinge 
glycines, causes the opening of the channel. The 
conservation of these hinge amino acids among KcsA, 
MthK and many potassium channels suggests a 
common mechanism for channel gating. Thus the 
opened structure of the KcsA channel was computed 
minimizing the distance between the inner helixes of 
KcsA and MthK by a rigid rotation of the intracellular 
side of the KcsA inner helixes around the hinge 
glycines.  
 
Parameters definition 
 

The membrane thickness was defined according to 
the KcsA atomic structure. The channel comes into 
contact with the membrane by the four outer helixes. 
These helixes have a hydrophobic segment between the 
amino acids TRP113 and TRP87. Thus, we used the 
position of these amino acids to define the thickness of 
the membrane in our model. The relative dielectric 
constant was set to 2 in the channel and the membrane 
and to 80 in the water solution. 

The diffusion coefficients were assigned considering 
three distinct regions: the channel outside (CO) 
corresponding to z > 16 Å and z < -15 Å, the selectivity 
filter (SF) spanning from z = 0 Å to z = 16 Å and the 
intracellular chamber (IC) from the intracellular channel 
mouth, z = -15 Å, to the intracellular end of the SF, z = 
0 Å.  Outside of the channel the diffusion coefficients 
were set respectively to sD /m 1096.1 29−

+ ⋅=  and 

sD /m 1003.2 29−
− ⋅= , according to the experimental 

values of free-diffusion in water solution for potassium 
and chloride ions. The mean radius of SF and IC is 
respectively 1.4 Å and 6 Å. In these areas ions and 
water molecules interact with the channel, causing a 
change in the diffusion processes and consequently in 
diffusion coefficient values. Molecular dynamic 
simulations predict a potassium diffusion coefficient 
reduced to 10% with respect to the CO value in SF and 
to 50% in IC [5;16]. We compared experimental  and 
computed currents with two different choices of the 
diffusion coefficients: i) Diffusion coefficients set 
according to the reduction computed by molecular 
dynamics; ii) diffusion coefficients set to the 
experimental values for free-diffusion in the whole 
system (CO, SF and IC).  
 
Results 
 

Computed currents overestimate the experimental 
data [17] if the experimental diffusion coefficients in 
free solution are used in the whole system (Figure 2 and 
3). Setting the membrane potential to 25 mV and both 
the extracellular and intracellular ion concentrations to 
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 100 mM, the computed current is 4 times the 
experimental value. The approximation gets worst rising 
the ion concentrations and the membrane potential. A 
possible approach to reproduce the experimental data is 
to use the diffusion coefficients as fitting parameters. 
Computed currents reproduce quite well the 
experimental data with a reduction of both the diffusion 
coefficients to 25% in the whole system (data not 
shown). However, a similar reduction of the diffusion 
coefficients is not justifiable. Otherwise, inside the 
channel, diffusion processes take place differently and it 
is reasonable to use different values for the diffusion 
coefficients. The usage of the diffusion coefficients 
computed by molecular dynamics [5;16] causes an 
improvement in the accordance between simulated and 
experimental data (Figure 2 and 3). Experimental data 
are yet overestimated, but the overestimation is widely 
reduced.  The root mean square deviation (RMSD) 
drops from 16 pA, with experimental diffusion 
coefficients, to 6 pA when is used a 10% and 50% 
reduction of the diffusion coefficients respectively in SF 
and IC. Overestimation is high at high membrane 
potential, but drops when the membrane potential falls 
in the physiological range. The RMSD is just 1.8 pA 
when the membrane potential is 25 mV and the ion 
concentrations range from 20 to 800 mM (Figure 4). 
 

 
Figure 2: Current-Voltage characteristic. Experimental 
data (o). Computed currents with diffusion 
coefficients: set to free diffusion values in the whole 
system (triangles); reduced to 10% in SF and to 50% 
in IC (square). 
 
 

 
Figure 3 Current-Concentration characteristic. The 
same symbols of figure 3 are used. 
  
 

Conclusions 
 

In this paper we have attempted to relate structure 
and function of ion channels, making use of the KcsA 
experimental data. To this end we developed a 
numerical solver of the PNP equations. In ion channel 
simulation studies, an approach based on the PNP 
electro-diffusion theory is complementary to an 
approach based on molecular dynamics. The last can 
reveal the atomic details about ion channel functioning, 
while the former, giving up the atomic detail, provide a 
way to compute ion currents. To simplify the 
mathematical model of ion conduction, the PNP theory 
describes the ion distributions with continuum 
functions. Despite this simplifying assumption the 
computed currents are in good accordance with the 
experimental data. It is important to highlight that the 
accordance between simulated and experimental data 
was obtained with diffusion coefficient values matching 
the ones computed by molecular dynamic simulations. 
Therefore these coefficients must not to be interpreted 
as fitting parameters. Instead, they connect the 
microscopic description provided by molecular 
dynamics to the macroscopic of the PNP theory. 

The accordance with the experimental data is good 
especially with membrane potential in the physiological 
range. At higher values an overestimation of the current 
was obtained, probably due to saturation effects not 
introduced in the model. Even if an improvement of the 
mathematical model in this direction is desirable, the 
present approximation provides a good tool to analyze 
the effects of structural changes on the channel 
functioning. 
 
Appendix: Numerical Method 
 

The numerical procedure used to solve the mass 
conservation equations (4) is presented here. For sake of 
clarity we will refer to a two-dimensional case, 
generalization to the three-dimensional case is 
immediate. The same numerical procedure was used to 
solve the Poisson’s equation (5). The ion flux in the x 
direction between the grid elements [ ]ji ,1− and [ ]ji,  
was expressed as: 
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that is the lattice version of equation (1) ( h  is the grid 
step, 1, −iiD  and 1, −iiC  are respectively the median 
diffusion coefficient and ion concentration between the 
grid elements [ ]ji ,1−  and [ ]ji, ). The ion fluxes x

iJ 1+  
(in the x direction between the elements [ ]ji,  and 

[ ]ji ,1+ ), y
jJ 1−  and y

jJ 1+   were expressed consistently. 
According to the mass conservation law, net steady state 
flux through any grid element is zero, that is: 
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Replacing in this equation the fluxes expressed as in (7) 
it is possible to write: 
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where k  is an index that rounds over the four 
surrounding grid elements ( [ ] [ ]  , j1,i , ,1 +−= jik  
[ ] [ ]1ji, , 1, +−ji ). Equation (9) was used in an iterative 

scheme based on the successive over relaxation 
techniques  to find the solution of the mass conservation 
equation [18]. At the first step ion concentration in each 
grid element is set randomly, these concentrations are 
then updated, according to: 
 

ji
n

ji
n

ji wCCwC ,
1

,, )1( +−= −  (10) 
 
where n

jiC ,  and 1
,
−n
jiC  are respectively the concentration 

computed at the step n  and 1−n , and jiC ,  is obtained 
by (9). Setting correctly the weight w , the number of 
iterations to reach the solution drops appreciably. To 
test the convergence to solution the root mean square 
distance between two successive iterations is used, the 
procedure is stopped when the root mean square 
distance falls below 10-3. 
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