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Abstract: The problem the EU sponsored Real-Prof 
project [1,2] seeks to address is that there is no 
means of scientifically monitoring the performance 
of therapeutic footwear and lower limb prostheses in 
the real world. This prevents the early detection of 
problems under the sole of the foot or on the stump 
which lead to ulceration, and potentially amputation. 
Also, clinicians prescribing the footwear or 
prosthesis and designers of these devices currently 
have no means of monitoring the performance of the 
device once fitted, which is a prerequisite for 
treatment improvements[3]. This paper details the 
progress in this project so far. 
 
Introduction 
 

Real-Prof is an EU Framework 5 project, which 
started in January 2003. The aim is to develop 
technologies for monitoring the health of lower limb 
amputees and patients with orthotic footwear. The 
project involves 8 partners from the UK, Ireland, 
Holland, Iceland and Israel, and is being led by the 
University of Salford. 

 
The core idea is to identify tissue deterioration in an 

amputee’s stump or in a patient’s foot before it 
progresses too far. The importance of this is clear from 
the following statistics. There are some 600,000 
prosthesis users and 2.4 million therapeutic footwear 
users in the EU. Of the worldwide diabetes population 
of 150 million, 15% will at some point have foot 
ulceration (Figure 1), which can lead to amputation of 
the foot. The average cost of a 2-year programme of 
care for each ulcer is 29000 Euro. 

 
The goal is to deliver pre-commercial prototype 

systems which can monitor patients in real-time, in their 
everyday life, and transmit data to clinics via secure 
wireless communication. In this way clinical 
intervention can occur as soon as problems develop 
rather than being delayed until the patient’s next routine 

visit to the clinic. Sensors will be integrated into the 
shoe or prosthesis socket to measure skin pressures, gait 
motions and other physiological parameters. The 
principal objective of the Real-PROF project, therefore, 
is to perform the necessary research, development and 
validation for an advanced intelligent personal health 
system integrated with prostheses and footwear. The 
system will collect and interpret previously unavailable 
data from prostheses and footwear, and present these 
data to clinicians and designers of prostheses/footwear. 
The system will be built around three key elements - 
new micro-scale, low energy sensors mounted in, or on 
the prosthesis or footwear, wireless 
telecommunications, and novel data interpretation tools. 

 

 
Figure 1: Typical foot ulcer 
 
Data will be pressure, oxygen saturation and activity 
from a prosthesis socket (from EU funded MAPS 
project [3]), and vertical and shear forces and motion 
from the footwear. These data sets will be sent 
wirelessly over a cellular network to a central server 
where intelligent decision support tools will facilitate 
early illness detection and timely and targeted allocation 
of health care resources. This paper will describe the 
work done so far in the development of the footwear 
hardware system and the data processing tools. The 
system will provide intelligent decision support systems 
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 to enable early illness detection and timely and targeted 
allocation of health care resources. 
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Figure 2: Overview of RealProf system 

 
 
System Overview 
 

Figure 2 shows the proposed system for therapeutic 
footwear. The prosthesis system is similar except that a 
different sensor set is used. A Sensor Interface Unit 
(SIU), which is an integral part of the shoe or prosthesis, 
provides signal conditioning, analogue to digital 
conversion and serial communication with the Data 
Link Unit (DLU), which is worn on the patient’s belt. In 
a future commercial system, it is envisaged that the 
DLU would be integrated with the patient’s mobile 
phone/PDA, rather than being a separate unit. The data 
is then transmitted to the clinic’s computer system via 
cellular wireless communication and the internet. 
 

Sensors  
 

Low cost, low energy, stable sensors have been 
researched and developed that will allow the loading at 
the foot-shoe interface (i.e. the sole of the foot) to be 
measured over prolonged periods outside the laboratory 
environment. The force sensor developed in Real-PROF 
is unique in that it measures not only vertical forces but 
also shear forces in two directions. These forces are 
believed to be critical in the development of solutions to 
clinical tissue problems under the foot, such as 
ulceration [4,5]. The force sensors are embedded in 
specially designed in-soles inside the shoe.  
 

 
Figure 3: Tri-axial Force sensor from University of Kent 
located under the 1st metatarsal head 

Miniature motion sensor technology has been 
researched and developed for this application, allowing 
lower limb and foot motion to be monitored over 
prolonged periods. The motion sensor provides 
information on the timing of walking events, such as the 
time the heel strikes the ground, the foot leaves the 
ground, stride length, and walking speed. These are 
critical activity measurements and important in the 
context of the force data collected [5]. The kinematic 
sensors are mounted in a box on top of the shoe. 
 

 
Figure 4: XSENS’ MT9 Inertial Measurement Unit 
(IMU) located in heel cavity 
 

Sensors Integration Unit (SIU)  
 

The SIU links both sets of sensors with the CDLU). 
The SIU contains the charge amplification and A/D 
conversion circuitry for the force sensors and the digital 
bus circuitry [6]. The digital bus protocol utilised for the 
sensor systems is called the Xbus, a proprietary system 
developed by Xsens [7]. In short, it is a protocol with a 
‘Master Unit’ controlling multiple ‘Slave Units’. The 
CDLU will host the Xbus Master Unit while the force 
sensors and kinematic sensors will connect to the slave 
units. Signals from both sets of sensors are transferred 
to the SIU via cables. Since the kinematic sensors 
provided by Xsens provide digital outputs and it utilises 
the Xbus protocol, no signal conditioning is required for 
the kinematic sensors. 

The force sensor outputs, however, require an 
amplification stage, A/D conversion and connection to 
an Xbus slave unit before data is in the correct format 
for transfer to the CDLU. The SIU is realised as a 
48mm x 33mm motherboard with 2 48mm x 17mm 
daughterboards attached. 
 

 
Figure 5: Motherboard with daughter boards attached 
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 Central Data Link Unit (DLU) -  
 
The CDLU contains the  
– User Interface 
– Internal Rechargeable Battery – the CDLU 

provides power to the SIU and the sensors 
– Removable Recording Media for data storage 
– RealPROF Archive interface – FTP 
– SIU Interface - XBUS Protocol Master Unit 
 

Intelligent Data Processing  
 

The data will be interpreted and presented to the user 
groups according to their needs. For the clinician, data 
interrogation techniques will be used to define instances 
when conditions at the shoe/foot or prosthesis/stump 
move outside normal boundaries for that patient. For the 
designers, data processing will be researched and 
developed that allow access to data describing material 
and product performance, and data that influence 
product specifications and design. Current methods for 
the analysis of walking data still rely heavily on 
interpretation by specialists (gait analysts). Real-PROF 
will gather new and large real world data sets, requiring 
innovation in the processing and interpretation of gait 
data. Real-PROF will apply advanced software 
techniques in the areas of:  

 Data enrichment – adding to the collected data 
 Clinical decision support systems – detecting 

normal and abnormal data using the patterns of 
data, relationships between different data, and 
vast databases for each patient. 

 
Data processing 
 

Advanced data processing algorithms are being 
developed, the aim being to provide patient alert, 
clinical decision support, and data for design and 
research purposes. Data processing can be viewed as 
two distinct problems, data enrichment and decision 
support. Data enrichment uses the raw sensor data to 
derive new, more useful data. Decision support uses the 
raw data and the derived data to identify normal and 
abnormal patterns, and thereby provide clinically useful 
information. Figure 6 shows how these two aspects 
interact. 
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Figure 6: Interaction between sensor data and decision 
support 
 

The algorithm development is in its early stages and 
only data enrichment has been considered to date. The 
aim is to look for correlations between the raw sensor 
signals (input data) and traditional gait laboratory 

measures or the activity being undertaken (output data). 
Where good correlations exist, algorithms will be 
developed to estimate the output data from the raw 
sensor data. 

Figure 7 describes the aim with regard to traditional 
gait laboratory measures. The idea is to simultaneously 
collect Real-Prof sensor data and traditional gait 
laboratory data. Where good correlations exist, the data 
will be used to develop algorithms which can: 
 
• estimate the motions of the lower limbs (e.g. 

segment angle time histories) from limited motion 
sensor data; 

• estimate net forces and moments (e.g. ground 
reactions or stump loads) from the force/pressure 
sensor data. 

 
If both of these can be achieved, then inverse 

dynamics calculations could be used to estimate the 
loads at the joints of the lower limbs. 
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Figure 7: Data enrichment process 
 

Because simultaneous Real-Prof and gait laboratory 
data has not yet been collected, virtual motion sensor 
data has been used to enable algorithm development. 
Data collected in the gait laboratory using a VICON 
multi-camera motion capture system has been used to 
generate both input and output data. The input data are 
the accelerations of the heel of the shoe and the angular 
velocity of the shoe, for both left and right shoes 
(sagittal plane only). Figure 8 shows an example of 
acceleration α of the left foot along the y axis and the 
corresponding velocity ω for four gait cycles (all curves 
are drawn in different colour). This data mimics the 
signals that would be obtained from accelerometers and 
a rate-gyro in the heel of each shoe. The output data are 
the time histories of the lower limb segment angles. 
Figure 9 depicts two angles θ for the left foot and shank. 
 

  
Figure 8: Acceleration and velocity of left foot for four 
gait cycles 

 

αle ωl
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Figure 9. Angles θ  for the left foot and shank 

 
Experimentation with artificial neural-networks 

[8,9,10] is ongoing. The aim is to use a network, to 
estimate the segment angle time histories θ, given the 
virtual sensor data {α and/or ω}. We have already 
demonstrated that a network is capable of learning the 
input-output mapping for one gait cycle (training data 
only). We are currently using data from multiple gait 
cycles to investigate the mapping of unseen data 
(separate training and testing data). 
 
Results 
 

Initial experiments showed that neural networks 
perform adequately in the fitting of segment angles from 
the kinematic data of one specific gait cycle. The 
success of this task reveals that the sought mapping is a 
functional one and the relation between kinematic and 
positional data is predictable for a given cycle. In total, 
there are six network input signals (two accelerations 
and one velocity per foot) and seven angle signals. 

Results investigating the effect of sensor data 
reduction, demonstrate that if the neural network is 
provided with data from only one foot and/or a subset of 
translational acceleration or angular velocity 
components the prediction deteriorates. However, by 
enriching the remaining data (e.g., by a functional 
expansion of the input signal, such as differentiation) 
the prediction accuracy can be reinstated. The 
conclusion is that enriching does enhance prediction 
accuracy, which means that simpler kinematic sensors 
can be used, perhaps only providing a few acceleration 
components, and not angular components as Real-Prof  
is using. 

We have used the following types of networks: 

• Multi Layered Perceptrons (MLP) 

• MLP with Regularisation (MLP+R) 

• Radial Basis Function networks (RBF) 

• RBF networks with Regularisation (RBF+R) 

• Generalised Regression Neural Networks (GRNN) 

 
Due to noisy measurement there is variability 

between the cycles and this makes generalisation of the 
networks a difficult task. All types of networks perform 
curve fitting of one gait cycle equally well, but GRNN 
are the most successful in predicting unseen gait cycles. 
We have tried a large number of different experiments 
with varying number of training, validation and testing 
sets. As currently we only have data for one person 

(with multiple cycles), we train the network with one to 
two cycles and assess the prediction accuracy of each of 
the networks (with different parameters/topologies) for 
each of the seven available angle signals. 

Figures 10-12 exemplify the learning process. Figure 
10 shows the results of predicting the left foot angle 
using a RBF network. Training is using one cycle 
(shown first in the graph) and testing the subsequent 
three ones. The correlation coefficient ρ was 0.95. 
Figure 11 shows the same experimental setup using 
MLP+R, where ρ=0.97. Figure 12 contains the results 
for the GRNN runs, where the value of ρ=0.996 was 
obtained. 

 

 
Figure 10: Prediction of the left foot angle using a RBF 
network 

 

 
Figure 11: Prediction of the left foot angle using 
MLP+R 
 

 
Figure 12: Prediction of the left foot angle using GRNN 

 
Conclusions 
 

This paper has presented the architecture of an in-
shoe real-time measurement system for performance 

θleft,foot θleft,sha
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 monitoring of therapeutic footwear. The significant 
parts of the system have been described while the initial 
data processing algorithms and results have been 
presented. The hardware system is currently being 
evaluated and will be tested in trials in the near future. 
Overall results for the data processing obtained so far 
are very encouraging yielding high quality fitting errors 
for all networks and for all angle signals. Furthermore, 
data enrichment is shown to be feasible, and this is 
highly beneficial to the sensor reduction task. GRNNs 
proved to be better in generalising unseen gait angle 
patterns, but all networks performed with high 
correlation coefficients and small normalised root mean 
square errors. 

It is difficult to judge at the moment though, whether 
this observation will persist with the actual Real-Prof 
data, since we currently only have virtual acceleration 
data, which is less noisy than the likely accelerometer 
based data. Nevertheless, the success with virtual data 
measurements proves that this should be the case, unless 
noise effect over-contaminate the data streams. Another 
important issue is the inter-subject generalisation. 
Predicting the output of unseen individuals is a very 
important issue which we plan to address in depth when 
more data is obtained. 
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