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Abstract: Recently a blind source separation method
based on canonical correlation analysis was developed
to remove gradually muscle artifacts from the Elec-
troEncephaloGram (EEG). The elimination of the
artifacts is achieved by deleting the muscle artifact
sources in a predefined way [1]. In this paper the
performance of the method is investigated when ap-
plied on EEG in the beta range (13-30Hz) contam-
inated with muscle artifact. Beta activity, having a
frequency overlap with muscle activity, contains clini-
cally relevant information, especially at the onset of an
epileptic seizure [2]. The new method outperformed
the commonly used low pass filter with different cut-
off frequencies, both on simulated data, as on real
EEG data. Furthermore, the method was computa-
tionally faster than the low pass filter and can in the
future be used for online analysis.

Introduction

The EEG is often contaminated by electrophysiologi-
cal potentials related to muscle contraction due to biting,
chewing, frowning. This noise, called EMG or muscle
artifact, obscures the EEG, therefore complicating the in-
terpretation of the EEG [3].

Commonly, low pass filters are used for muscle arti-
fact correction in EEG. However, the frequency spectra
of the interesting brain signals and the muscle activity
overlap [4]. By consequence, when eliminating all mus-
cle artifact also valuable information, such as ictal beta
activity, will be suppressed [2]. Furthermore, muscle ar-
tifact filtered by a low pass filter can resemble cerebral
activity, such as beta activity or epileptic spikes [5], or
rhythmic activity in the alpha frequency band [6], which
can lead to an incorrect interpretation of the filtered EEG.

More recently, Independent Component Analysis
(ICA), which separates the EEG into statistically inde-
pendent components, is investigated for its use in artifact
removal [7, 8]. However, the identification of the compo-
nents containing the artifacts in general, and muscle ac-
tivity in particular, were not obvious, and required much
user attention. Moreover, cross-talk was observed when
the separation of brain and muscle activity was consid-
ered.

In [1] a new method for muscle artifact elimination in
the EEG was presented, based on the statistical Canonical
Correlation Analysis (CCA) method applied as a Blind
Source Separation (BSS) technique, further referred to as
BSS-CCA. In this paper the performance of the method is
evaluated on synthetic EEG data in the beta range (13-30
Hz) and compared with the performance of low pass fil-
ters with different cut-off frequencies. Moreover, the per-
formance and required computation time of both methods
are compared when applied to real EEG data in the beta
range.

Materials and Methods

Blind source separation by CCA for artifact removal:
Blind source separation recovers a set of unknown source
signalss(t) = [s1(t), ...,sK(t)]T which are linearly mixed,
with t = 1, ...,N, N the number of samples andK the
number of sensors. The signals at the sensorsx(t) =
[x1(t), ...,xK(t)]T are the only available information and
can be written as:

x(t) = A·s(t), (1)

with A the unknown mixing matrix. The goal is to esti-
mate the mixing matrix and recover the original source
signalss(t). This is achieved by introducing the de-
mixing matrixW such that

z(t) = W ·x(t) (2)

approximates the unknown source signals ins(t), by a
scaling factor. Unless there are extra constraints imposed,
it is in general impossible to solve this problem. Canon-
ical correlation analysis solves the problem by forcing
the sources to be mutually uncorrelated and maximally
auto-correlated. To impose these criteria BSS-CCA uses
the CCA-technique with inputx(t), the observed time
courses and inputy(t), a temporally delayed version of
the original data matrixx(t) [9]:

y(t) = x(t−1). (3)

Consider the linear combinations of the mean corrected
components inx andy:

U = wx1x1 + · · ·+wxmxm = wT
x x,

V = wy1y1 + · · ·+wymym = wT
y y

(4)
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 CCA finds the vectorswx = [wx1, ...,wxK)]T and wy =
[wy1, ...,wyK ]T that maximize the correlationρ between
U andV by solving the following maximization problem:

max
wx,wy

ρ =
E[UV]

E[U2]E[V2]
. (5)

When CCA is used for blind source separation, as pre-
sented here, the canonical correlationsρ correspond to
the autocorrelations of the sources. It is known that
canonical correlations are equal to the cosines of the prin-
cipal angles between the row spaces ofxT andyT [10].
The canonical variatesUT andVT correspond to the prin-
cipal directions in the corresponding row space ofxT and
yT . Therefore, the canonical correlations and canonical
variates can be obtained as follows. LetxT = QxRx and
yT = QyRy be the QR decompositions ofxT andyT , re-
spectively. From the SVD ofQT

x Qy [10]:

QT
x Qy = ECFT , (6)

the autocorrelationsρ can be extracted as the diagonal
elements ofC. The columns ofzT = QxE give the canon-
ical variates ofxT , corresponding to the estimates of the
sourcessi(t). These columns ofzT , thus the sources, are
ordered by decreasing autocorrelation.

When BSS-CCA is applied to the EEG and the
sources, or components, contributing to the EEG are de-
rived, the muscle artifact can be removed by setting the
columns representing the activations of the artifactual
sources equal to zero in the reconstruction

xclean(t) = Acleanz(t), (7)

with z(t) the sources obtained by BSS-CCA, andAclean

the mixing matrix with the columns representing activa-
tions of the muscle artifactual sources, set to zero.

In [1] it was observed that BSS-CCA was able to
distinguish muscle artifact components from the compo-
nents related to the brain activity. Moreover, these mus-
cle artifact components were always those with the lowest
auto-correlation. Therefore, a semi-automatic removal of
muscle artifacts could be obtained by gradually removing
components from lowest autocorrelation upwards.

Simulation study:Simulated data were constructed to
evaluate the performance of the method in removing mus-
cle artifacts from EEG in the beta range. The synthetic
dataX was constructed as the superposition of brain ac-
tivity in the beta rangeB and muscle activityM, for dif-
ferent signal-to-noise ratios (SNR):

X(λ ) = B+λM, (8)

with λ representing the contribution of the muscle activ-
ity. A scalp EEG epoch of 10 seconds, which was char-
acterized by a dominant beta activity pattern and free of
muscle artifacts, was selected by an experienced neuro-
physiologist as the underlying brain signal. The data was
collected from 21 scalp electrodes placed according to
the international 10-20 system [11] with additional elec-
trodes T1 and T2 on the temporal region. The sampling

frequency was 250 Hz and an average reference montage
was used. The signal was stored in the 21-by-2500 di-
mensional matrixB and is illustrated in figure 3a.

The simulation study also required pure muscle activ-
ity, therefore it was not sufficient to select muscle artifacts
in the EEG, as these events also contained brain activity.
To obtain solely muscle artifacts ICA-SOBI [12] was ap-
plied on 10 seconds average referenced EEG epochs to
decompose these activities. As mentioned before, ICA
has trouble with separating muscle and brain activity.
Thus for a large number of events, which were visually
inspected, no clear separation was established. For those
events where a clear separation between muscle activity
and brain activity was obtained, the independent compo-
nent (IC) accounting for the muscle artifact was selected
together with the corresponding field distribution. This
procedure was repeated for the EEG from two other sub-
jects. Each selected component was reconstructed sep-
arately into a conventional EEG format and then added
together. The resulting average referenced signal was
stored in matrixM.

The overall performance of the method was deter-
mined in terms of the Relative Root Mean Squared Error
(RRMSE) of the EEG signal:

RRMSEEEG = RMS(B− B̂)/RMS(B), (9)

with B̂ the estimated muscle artifact free EEG andRMS
the Root-Mean Squared value, defined as follows:

RMS(B) =

√
1

KN

K

∑
k=1

N

∑
n=1

B2
kn, (10)

with N equal to the number of samples andK equal to
the number of EEG channels. Beside the overall per-
formance, the modification of the beta-activity was also
quantified. For this purpose the power spectrum of the
underlying brain signal and the estimated brain signal
were constructed based on the Fast Fourier Transform
(FFT). Subsequently, that part of the spectra between
13Hz and 30Hz was selected, resulting in the beta spec-
tra. The modification of beta-activity was then quantified
as the RRMSE of the beta power spectra:

RRMSEPS= RMSPS(SB−SB̂)/RMSPS(SB), (11)

with SBthe beta-spectrum of the underlying brain signal
B, SB̂ the beta-spectrum of the estimated brain signalB̂
andRMSPS the Root-Mean Squared value of the Power
Spectra:

RMSPS(SB) =

√
1

KL

K

∑
k=1

L

∑
l=1

SB2
kl , (12)

with L equal to the number of frequency bins in the power
spectra andK equal to the number of EEG channels.

Several synthetic data sets with different values forλ
were constructed (see equation 8), resulting in simulated
signals of varying signal-to-noise ratios:

SNR=
RMS(B)

RMS(λM)
. (13)



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 Figure 3b shows an example of one such synthetic signal.
For each noise level, the most optimal setting of the BSS-
CCA method was selected. This setting removed that
number of components (starting from the one with the
lowest autocorrelation) which yielded a minimum overall
RRMSE (RRMSEEEG).

For comparison, the muscle artifacts were also elim-
inated by the commonly used low pass filters. For this
purpose, a low pass Butterworth filter of order 8 was ap-
plied. For each noise level, the most optimal cut-off fre-
quency, varying between 10 and 30 Hz with a step of 1
Hz, was set in terms ofRRMSEEEG.

Real EEG:The source separation method was also
applied on a 10s real EEG with beta activity appearing
at Cz after 6 seconds as depicted in figure 4a. The EEG
is contaminated with muscle artifact, especially the last
3 seconds. The acquisition settings were the same as for
the brain activity in the synthetic data set. The results of
the BSS-CCA filtering and frequency filtering were then
visually inspected. Error measures could not be used as
we did not have a-priori information available of the brain
or artifact sources.

Computational load:Computational load is not an is-
sue when user interference is required. However, when
in the future a full automatic muscle removal algorithm is
constructed, the computational load becomes an issue, as
online analysis is then required. To illustrate the compu-
tational load the computation time for BSS-CCA is com-
pared with that of the LP-filter for the 10s real EEG. The
optimal LP-filter, a Butterworth filter of order 8 and cut-
off frequency 22 Hz was used. The optimal number of
components removed (CR) with the BSS-technique was
15. The required computation time for the 2 filters was
determined and this was repeated 20 times, leading to the
average required computation time for both filters. These
tests were done in Matlab 7.0.4 on a Pentium 3 processor
running Windows XP operating system.

Results

Simulated data:For each signal-to-noise ratio, the
muscle artifact was better removed from the synthetic
EEG by the BSS-CCA technique than by the most op-
timal LP-filter as shown in figure 1. The overall RRMSE
for the BSS technique was on average2.62±0.26 times
lower than that of the best LP-filter. The optimal settings
for both the low pass filter and the BSS-CCA filter were
influenced by the SNR. In the case of the low pass fil-
ter, a higher cut-off frequency is needed in cases of high
SNR, while a lower cut-off frequency is more optimal
when the noise level is high, as can be seen in figure 1 by
comparing the performance of the LP-filters with fixed
cut-off frequency for different SNRs. In the case of the
BSS-CCA filter, the higher the noise level, the higher the
number of the removed components. Hence, more com-
ponents were needed to capture all muscle artifacts. Not
only the overall performance of the BSS-CCA filter was
higher than that of the LP-filter, but also the power spec-
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Figure 1: The overall RRMSE versus the SNR for the
most optimal LP-filter(..), for the BSS-CCA technique(-)
and for LP-filter with different cut-off frequencies: 10 Hz
(–), 15 Hz (..), 20 Hz (.-), 30 Hz (-).
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Figure 2: The RRMSE of the beta spectra versus the SNR
for the most optimal LP-filter(..), for the BSS-CCA tech-
nique(-) and for LP-filter with different cut-off frequen-
cies: 10 Hz (–), 15 Hz (..), 20 Hz (.-), 30 Hz (-).

trum in the beta-range was less affected by the BSS-CCA
filter than by any of the LP-filters as can be seen in fig-
ure 2. The RRMSE of the beta-spectra for the BBS-CCA
filter was on average2.41±0.39 times lower than that of
the best LP-filter. The highRRMSEPS for low signal-to-
noise ratios after low pass filtering, corresponded to a vis-
ible degradation of the beta activity, while the BSS-CCA
method did not show such obvious degradation. This
is illustrated in figures 3(a,b,c,d). The original artifact
free signalB (figure 3a) was heavily contaminated by the
synthetic muscle artifact signalM resulting in a signal
with SNR 0.33 (figure 3b). The BSS-CCA filtering only
slightly affected the beta activity (figure 3c) correspond-
ing to an overall RRMSE of 0.43 and aRRMSEPSof 0.57,
while the most optimal low pass filter eliminated the beta
activity (figure 3d), resulting in the much higher overall
RRMSE of 1.14 andRRMSEPS of 0.98.

Real EEG:Figure 4b presents the result of the BSS-
CCA filter on the real EEG containing beta activity at Cz
from 6-10 seconds, 15 components were removed. The



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

0 1 2 3 4 5 6 7 8 9 10

T1
T2
P3
C3
F3
O1
T5
T3
F7

Fp1
Pz
Cz
Fz
P4
C4
F4
02
T6
T4
F8

Fp2

Time (sec)

60 uV

(a)

0 1 2 3 4 5 6 7 8 9 10

T1
T2
P3
C3
F3
O1
T5
T3
F7

Fp1
Pz
Cz
Fz
P4
C4
F4
02
T6
T4
F8

Fp2

Time (sec)

60 uV

(b)

0 1 2 3 4 5 6 7 8 9 10

T1
T2
P3
C3
F3
O1
T5
T3
F7

Fp1
Pz
Cz
Fz
P4
C4
F4
02
T6
T4
F8

Fp2

Time (sec)

60 uV

(c)

0 1 2 3 4 5 6 7 8 9 10

T1
T2
P3
C3
F3
O1
T5
T3
F7

Fp1
Pz
Cz
Fz
P4
C4
F4
02
T6
T4
F8

Fp2

Time (sec)

60 uV

(d)

Figure 3: (a)The 10s artifact free EEG B, (b) The 10s syn-
thetic EEG polluted with muscle artifact M, SNR=0.33,
(c) The EEG filtered with the BBS-CCA technique, (d)
The EEG after optimal low pass filtering

optimal result of the low pass filter was obtained for a
cut-off frequency of 22 Hz and is depicted in figure 4c.
In figure 5 only the Cz-channel is shown, beta-activity is
present from second 6 to second 10. In both cases most of
the beta activity is still apparent after filtering (see figure
5), but in the case of the low pass filter more muscle ar-
tifact is still present in the EEG (see figure 4). Lowering
the cut-off frequency resulted in losing the beta activity.
Augmenting the cut-off frequency resulted in retaining
more muscle artifact.
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Figure 4: (a) A 10s real EEG with beta activity at Cz from
6-10 seconds, (b) The EEG after BSS-CCA filtering, (c)
The most optimal result with a low pass filter.
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Figure 5: (a) The Cz-channel from the 10s real EEG with
beta activity from 6-10 seconds, (b) The Cz-channel after
BSS-CCA filtering, (c) The Cz-channel after optimal low
pass filtering.

Computational load:In table 1 the average time and
standard deviation required to filter the real EEG signal
(21x2500) are given. It shows, that the BSS-CCA tech-
nique is two times faster than the low pass filter for a 10s
analysis. Both methods have a small computational load
and are hence suitable for online analysis.

Table 1: Computation time

Method Computation time (s)

BSS-CCA (15 CR∗) 0.043±0.022

LP-filter (22 Hz) 0.086±0.077
∗CR=components removed

Discussion

In [1] a similar simulation study already showed that
the BSS-CCA technique outperformed low pass filters for
removing muscle artifact in an EEG in the alpha range
(8-13 Hz). The simulation study in this paper showed
that the BSS-CCA method is also more suitable than the
routinely applied low pass filter for removing muscle ar-
tifact in an EEG signal in the beta range. Moreover, it is
shown that the method is computationally faster than the
LP-filter and online analysis is possible in the future.

In this study no comparison was made with an ICA
based technique to remove muscle artifacts. There are
three reasons for that: (a) there is no predefined way
of selecting the muscle components, thereby forcing the
user to visually inspect the components itself. Because
muscle artifacts don’t have a typical waveform, in con-
trast to eye artifacts, much user interaction is needed.
(b) Some components will contain both brain activity as
muscle activity, which does not facilitate the classifica-
tion of the components which result in the most optimal
artifact removal. (c) The required computation time of

ICA methods, e.g. JADE and SOBI, is much higher than
that of BSS-CCA. the latter is 162 (resp., 7) times faster
than JADE (resp. SOBI) for a 21x2500 matrix.

Although the BSS-CCA technique performs better
than the LP-filter, the BSS-CCA technique also has its
limitations. The most important limitation is the restric-
tion on the maximum number of components, as in most
BSS techniques. As reported above, the higher the noise-
level, the more components are needed to contain all mus-
cle artifact information. By consequence, if the SNR be-
comes too small, too many components will be required
for the muscle artifact, thus a good separation of muscle
and brain signal will be unfeasible. This can explain the
increasing error when decreasing the SNR in figures 1,2.

As in the case of the LP-filter, the optimal setting of
the BSS-CCA method is not known a-priori. For visual
interpretation of the EEG, this is not a real disadvantage
because one can determine the best setting, by a matrix
multiplication as in equation 7, by successively removing
the source with the lowest autocorrelation. On the other
hand, to use the method as a preprocessing step prior to
e.g. online automatic seizure detection, the optimal num-
ber of components that need to be removed, should be
known in advance. Future research will be focused on
the automatization of the muscle artifact filter.

Nevertheless, the method can already be applied in
clinical practice, for instance, in ictal EEG where muscle
artifacts impede the interpretation.

Conclusions

The presented method BSS-CCA is better suited for
the removal of muscle artifact in the EEG than the stan-
dard low pass filters, even when EEG in the beta range
is considered. Moreover, the method is computationally
faster than the low pass filters and can already be applied
in clinical practice.
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