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Abstract: The paper deals with computational 

modelling of mechanical behaviour of soft tissues in 

arterial wall. Three computational models are 

presented. Model No. 1 models abdominal aortic 

aneurysms (AAA) at the level of a multilayer aortic 

wall structure with hyperelastic isotropic material 

properties of the individual layers. The extreme 

principal stress in the AAA is evaluated and 

compared with the stress in an intact aorta. The 

ratio of these stresses should be used in the 

evaluation of AAA rupture risk. Model No. 2 models 

an individual smooth muscle cell (SMC) at the level 

of a homogeneous hyperelastic isotropic continuum. 

Parameters of the 5-parameter-Mooney-Rivlin 

constitutive model are identified from the tension 

test of the SMC. Model No.3 models tension and 

indentation tests of SMCs with taking the cell 

structure into account, with cytoskeleton represented 

by a simple tensegrity structure.  
 
Introduction 

 

The paper is focused on computational modelling 
of arteries and smooth muscle cells they are abounding 
with. The problems to be solved in this field were 
induced by the fact that artificial replacements began to 
be used in cardio-vascular surgery in several last 
decades. Vascular grafts used as replacements of 
partially or fully occluded arteries are examples of such 
replacements; furthermore, various supports are used 
more and more frequently in the vascular system (e.g. 
arterial stents). Also some sorts of surgical treatments 
based on mechanical principle bring similar, i.e. among 
others also biomechanical problems (e.g. angioplasty or 
resection of parts of arteries). A frequent use of these 
procedures requires a thorough knowledge on properties 
of all tissues and other materials in question. 
Remodelation of the tissues, i.e. adaptation of their 
structure to the changed conditions, is a typical response 
of the living tissues on the changed mechanical load; 
these processes tend to re-establish the original 
physiological state. Also atherosclerotic changes are 
stimulated by mechanical factors such as high blood 
pressure, endothelial damage etc. Since all of these 
processes start at the cellular level, models at various 
levels are created and solved, from the macroscopic 
level with only one or a few homogeneous layers 
throughout the arterial wall down to the microscopic 

level at which we modell mechanical behaviour of 
individual smooth muscle cells (SMCs).  
 

Materials and Methods 

 
The problems of stress-strain analysis of diseased 

or mechanically treated arteries, at both macroscopic 

and microscopic levels, are solved using computational 
modelling based on finite element method; in particular, 
the program system ANSYS is used in all of the 
presented computational models. At a macroscopic 

level, a model for stress-strain analysis of abdominal 
aortic aneurysms (AAA) is presented in the paper 
(further denoted as model No. 1). The extreme stress 
values in the wall of the AAA are compared with 
extreme values in the intact aorta. The ratio of these two 
values enables us to evaluate the risk of the AAA wall 
rupture better than the mere maximum AAA diameter, 
which is the only standard criterion used in clinical 
practice.  

Initial geometry of the 2D model is created on the 
basis of a CT image. The density comparison method 
was used for segmentation of CT images into various 
areas, corresponding to the basic tissue types (e.g. 
adventitia, media and thrombus). In particular, the 
maximum cross section of the AAA is divided into three 
planar areas (see fig. 1), which define the regions with 
different constitutive parameters of the material; 
sometimes even calcifications can be differentiated  in 
the CT image as another one type of material. The 
computational model assumes homogeneous, isotropic, 
incompressible and nonlinear elastic behaviour of all 
materials in question (except of calcifications); in 
particular, Yeoh 3rd order hyperelastic constitutive 
model has been chosen. It is described by the following 
equation of the strain energy density function 

Figure 1: Segmented areas of the AAA cross section 
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where W is strain energy potential; I'1 is the first 
deviatoric strain invariant; ci0 are material constants. 
The model is loaded by a stepwise increasing inner 
pressure up to 10 kPa and is solved under plane strain 
conditions to ensure zero axial deformations, what is 
(according to [1]) near the physiological conditions.  

At a microscopic level, we model the mechanical 
behaviour of SMCs. Recently some results of tests 
carried out with isolated SMCs have been published; 
they can be simulated computationally to identify the 
constitutive relations of the cells or their components. 
We modelled the tests at two different levels: a 
homogeneous isotropic non-linear elastic material of the 
whole cell and the cell with its inner structure modelled 
as a tensegrity structure. 

 The tests carried out with individual SMCs and 
suitable for computational modelling are as follows: 

Micropipette aspiration method [2] is based on 
aspiration of the cell into a micropipette (with inner 
diameter of several micrometers, i.e. smaller than SMC 
dimensions). It can be supposed that the aspiration is 
influenced mostly by the stiffness of the membrane with 
the cortex of cell, both modelled together by shell 
elements.  

Indentation tests [3] have shown different stiffness 
in various parts of the cell; the central part (probably 
nucleus and its surroundings) is stiffer than peripheral 
parts of the cell. As the global shape of the cell does not 
change substantially during the test, a less pronounced 
influence of the deep cytoskeleton can be expected and 
the above difference is supposed to be caused by 
different properties of sarcoplasm in central and 

peripheral parts of the SMC. Under assumption of 
known properties of the cortex, parameters of 
sarcoplasm constitutive model in both parts of the 
model could be identified using computational 
simulation of these tests.  

Tension tests [4] and compression tests with 

microplates [5] induce substantial global changes in the 
cell shape. As the endoskeleton appears to be the most 
important load-bearing structure of the SMC in this 
case, it is possible (when the cortex properties are 
known) to identify the constitutive parameters of this 
structure with known geometry and topology (as 
described e.g. in [6]). 

A simple homogeneous model (further denoted as 
model No. 2) was solved as the first step in 
computational modelling of SMCs (of a contractile 
phenotype), with the aim of a more sophisticated 
evaluation of tension tests of SMCs published in [4]; the 
test results were presented there as dependencies 
between cell elongation and reaction force in a 
micropipette glued to the cell. The initial shape of the 
"in vitro" cultured cells was nearly spherical, so that 
there could not be a uniform stress state in the cell 
model and it is not correct to evaluate stresses and 
strains using any simple analytic formulas. The cells 
undergo large strain and the measured curves are nearly 
independent from the load direction. Therefore the cell 
material was supposed to be homogeneous isotropic 
with hyperelastic behaviour. The computational model 
enabled us to evaluate the stress-strain curves of this 
material and to identify the parameters of the chosen 
constitutive model in this way. Finally, we used 
Mooney-Rivlin five-parameter constitutive relation, 
describing the strain energy density function by the 
following formula: 

     
where ii are modified invariants of the right Cauchy-
Green deformation tensor, κ denotes the bulk modulus 
and ai are other material parameters (Mooney-Rivlin 
constants).  

The parameters of the constitutive model were 
evaluated using an iterative approach. In the first step, 
the initial σ-ε curve was estimated and the parameters 
of the constitutive model evaluated from this curve 
were used in the model. Then the force-elongation 

curve obtained by computational simulation of the test 
was compared with the experimental one and the 
material parameters were modified with the aim to 
achieve a better agreement between the computed and 
experimental curves. This iteration process was 
repeated until a sufficient agreement between both 
curves was achieved (details see [7]).   

Subsequently a more complex model (denoted 
further as model No. 3) of SMC was created, which 
comprehends structural parts of the cell substantial 
from the mechanical viewpoint, i.e. the following ones 
(see fig. 2): 

• Membrane skeleton (cortex of cell) modelled 
together with the cell membrane as a shell on the cell 
outer surface. 

• Deep cytoskeleton with geometry and topology 
based on a simple tensegrity structure. This structure 
consists of 6 struts (compression bearing elements) 
representing microtubuli and 24 cables (tension bearing 
elements) representing microfilaments. 
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Fig.2: FE model (No.3) of indentation test 
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 • Central part of the cell (nucleus and adjacent 
organelles, e.g. centrosome) modelled as an elastic 
continuum. 

• Peripheral parts of sarcoplasm (except for nucleus 
and its surroundings) modelled as a very compliant 
elastic continuum. 

In addition to the tension test (with the spherical 
initial geometry of the cell model), we tested the 
applicability of this computational model on modelling 
of the indentation tests, which is able to quantify the 
local stiffness in various points of the cell surface. The 
model of this test realized by atomic force microscopy 
(AFM) in [3] is shown in fig. 2. Model geometry 
corresponds to the real geometry of the cell cultivated 
on a rigid substrate. 

 Because of an unambiguous identification of 
elastic parameters of the model, all the materials of this 
model are supposed to be homogeneous, isotropic, 
linear elastic (elastic parameters and other details were 
published in [7]). The struts and cables of the 
tensegrity structure are modelled by 1D link elements, 
nucleus and sarcoplasm by 3D solid elements and 
membrane skeleton by shell elements. A low prestrain 
value was defined in the cytoskeleton cables 
(representing actomyosin contractile microfilaments) to 
stabilize the shape of the cell. The AFM tip stiffness is 
several orders higher than that of the cell so that the tip 
can be modelled as a rigid body to make the 
computation substantially less time-consuming.  

The following boundary conditions were 
prescribed in the model: displacements of all nodes 
being in contact with the substrate are zero. Contact 
elements are used to model the contact between the 
AFM tip and the cell. The load is realized by vertical 
displacement of the AFM tip (see fig. 2), prescribed in 
its pilot node where the contact reaction force is also 
evaluated.  
 
Results 

 

Table 1: Maximum principle stresses and their ratio 

Model No.1 was loaded stepwise by the inner 
pressure, and we compare the maximum principal 
(circumferential in most cases) stress in the AAA with 
maximal values in the intact artery in the sequential 
load steps. An example of the stress distribution in the 

AAA wall is presented in figure 3. Table 1 presents the 
results in comparison with the values in an intact aorta. 

The results of model No.2 (SMC tension test) are 
presented in fig. 4 in the form of the resulting stress-
strain curve of the material of the cell. The initial curve 
was computed by simple division of the measured 
force and elongation by the maximum cross section 
and diameter of the spherical cell, respectively. The 
resulting curve is input curve of the used Mooney-
Rivlin material model (its constants see tab.2), which 
results in the force vs. elongation dependence nearly 
identical with the experimental one. More details about 
the procedure see [7]. 

 
Table 2: Mooney-Rivlin constants of a 

homogenized model of contractile SMC acc. to eq. (2) 

 

Model No.3 was tested in simulation of tension and 
indentation tests. Since the deep cytoskeleton is 

a1 a2 a3 a4 a5 

-3,530 3,862 -0,9833 3,1470 -0,4336 

blood  
pressure 

[kPa] 

stress in the 
aneurysm 

[kPa] 

stress in the 
intact aorta 
[kPa] 

stress increase  
ratio in AAA 

 
1 38 11 3,5 
2 75 22 3,4 
3 116 35 3,3 
4 161 47 3,4 
5 212 60 3,5 
6 267 75 3,6 
7 326 90 3,6 
8 390 106 3,7 
9 458 123 3,7 

10 529 140 3,8 

Figure 3: First principal stress distribution - detail of 
the AAA wall with trombus  
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Figure 4: Initial and resulting stress-strain curves 
of a (homogeneous) smooth muscle cell  
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 modelled as a very simplified tensegrity structure, the 
stresses in cytoskeleton elements cannot be realistic. 
Illustrative resulting stresses in the sarcoplasm (incl. 
nucleus but excl. cytoskeleton) are presented in fig. 5. 

Results of computational simulation of the 
indentation tests using model No.3 acc. to fig. 2 are 
evaluated in the form of the dependency of the reaction 
force in the pilot node on the indentation depth, i.e. in 
the way similar to the experiments in [3]. The 
simulation with the nominal values of elastic 
parameters (according to table 3) gave realistic results, 
being in accordance with the experiments (see fig.6). 
  
Tab.3: Elastic parameters of cell components used in 
the computational model No.3 

 

The elastic parameters were not determined by 
identification, because their number is too high to be 
identified from one type of experiment only. Therefore 
a sensitivity analysis was carried out by changing each 
of the elasticity moduli separately in the range of 50 – 
200% of its nominal value; the influence of these 
changes was evaluated. Results of these simulations 
are presented in fig.7. 

 
Discussion 
 

The most significant problem of the model No. 1 
of the AAA is that we do not know which phase of the 
cardiac cycle the CT scan was made in. Therefore we 
are not able to determine the blood pressure in the 
moment of CT scanning. Therefore we evaluated the 
stress ratio between the AAA and intact aorta that is 
nearly independent of the blood pressure (see tab. 1). 
Then the stress ratio evaluated in this way should be a 
better criterion than the mere diameter of the AAA, as 
it is usual in clinical practice. 

Even if the CT scanner is able to determine the 
phase of the cardiac cycle and, consequently, the blood 
pressure in this moment, we would not know the initial 
(unloaded and undistorted) geometry of the aorta and 
AAA, but only the shape under this load. The 
possibility very simple at first sight, namely loading of 
the model with the scanned geometry by a 
corresponding negative blood pressure to obtain the 
unloaded shape, fails because of shape instabilities 
(buckling). Therefore the only possibility of how to get 
an approximate unloaded shape is a homothetic 
transformation of the scanned shape with the ratio < 1; 
this ratio could be calculated from deformations based 
on some simpler model. The check of the deformed 
shape after being loaded by the corresponding blood 
pressure should be done by comparison with the CT 
scan made under the corresponding conditions.  

The models of the SMCs are rather different from 
each other. Model No. 2 (homogeneous) is as simple 
that its five Mooney-Rivlin constants can be identified 
unambiguously using tension test only. This model can 
simulate the mechanical properties of the SMC in a 
higher level structure (tissue) but it is not sufficient for 
understanding the tissue reaction on the load that must 
be induced at the level of its structural parts.  

Model No. 3 represents our first attempt of 
creating a model of SMC taking the cell structure into 
account. As the number of unknown material 
parameters is too high, they were not identified but 
only chosen to give realistic results of the indentation 
test. Then the sensitivity analysis was made to estimate 
the influence of the stiffness (modulus of elasticity) of 
the individual parts on the simulation results. 

It is evident that the resulting curves are mostly 
influenced by the stiffness of cytoplasm and 
microtubuli. In opposite to our assumptions, the 
influence of membrane skeleton was lower (but still 
significant), while the influence of nucleus and of 
microfilaments was negligible. The elasticity moduli of  

 Modulus of 
elasticity [kPa] 

Poisson’s 

ratio [-] 

Micro-tubuli 4e5 0,3 

Micro-filaments 5e5 0,3 

Membrane skeleton 10 0,3 

Cytoplasm 0,25 0,45 

Nucleus 1 0,3 

Figure 6: Comparison of the simulated curve (blue 
dashed line) with the experimental ones. 

Figure 5: Illustrative Mises stress [kPa] distribution in 
SMC model No.3 during tension test 
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Fig.7: Influence of the individual cell model components on the resulting curves of computational simulation of 
indentation tests. The curves force F vs. indentation depth L present influences of the following changes in 
elasticity moduli of: a-cytoplasm, b-membrane skeleton, c-nucleus, d-microfilaments, e-microtubuli, all in the 
range from 50 (dotted lines) up to 200 % (dashed lines) of the nominal value (solid line). Fig. f) presents an 
illustrative distribution of the 1st principal stress [kPa] in the cytoplasm and nucleus. 
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 struts and cables of the cytoskeleton, however, are 
extremely high; this discrepancy can be due to the too 
simple tensegrity structure. The real cytoskeleton 
structure is very complex and counts an excessive lot 
of basic elements, microtubuli and microfilaments (see 
e.g. [8], [9]). The cross sections of the struts and cables 
in the model were defined in accordance with the cross 
sections of the microtubuli and microfilaments, what 
results in their very high elasticity moduli. However, it 
has no effect to change the cross sections of the 1D 
elements, the only way to achieve better accordance 
with reality is to use a more complex tensegrity 
structure in the model what should be done in near 
future.  

 

Conclusions 

 

The computational model No. 1 evaluates the stress 
states in the maximum diameter region of the AAA. 
The stress increase caused by the AAA is quantified by 
the maximum principal stress ratio between the AAA 
and the intact aorta. This ratio is influenced not only by 
the diameter of AAA, but also by the thickness of the 
arterial wall (or of its layers), thrombus effect, real 
irregular geometry of the AAA, and by material 
properties of individual tissues. Therefore it could 
enable us to judge the risk of AAA rupture much more 
effectively and exactly than by the mere monitoring of 
the maximal outer diameter how it is done in clinical 
practice. 

The other two models represent computational 
simulation of various tests carried out with SMC. The 
model No.2 based on the homogeneous material 
properties of cytoplasm enables us to identify the 
elastic parameters of the material using the tension test 
only. This model can be sufficient for modelling the 
mechanical behaviour of the cell as a whole in a higher 
structure (tissue), but it cannot be sufficient for 
understanding tissue remodelation and other 
physiological or pathological processes being induced 
at the level of cell organelles. It requires a more 
complex model taking the organelles significant from 
the mechanical viewpoint into account; for the 
identification of material parameters of such a model, 
however, more tests with the particular type of cell 
should be carried out and simulated by computational 
modelling. 
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