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Abstract: Part of the presurgical evaluation for performing 
epilepsy surgery, is the invasive electroencephalogram (EEG) 
monitoring, which is defined as the long-term recording of the 
electrical brain activity using intracranial electrodes. Typically, 
only the ictal episodes in the intracranial recordings are used for 
analysis, although the interictal episodes might also contain 
relevant and useful information. In this paper we present a 
method that can be useful to analyze and summarize long-term 
intracranial recordings. The method consists of four steps: (i) 
removal of evoked potential stimulation artefacts; (ii) detection of 
phenomena that deviate from the background EEG activity, 
which we assume to have a Gaussian distribution; (iii) clustering 
and modeling of the detected waveforms using Ward’s 
hierarchical clustering algorithm and a Gaussian mixture model; 
(iv) visualization of the results. To evaluate the performance and 
usefulness of the method, we  compared the number of detections 
of the method per 5 min. with the number of epileptiform 
discharges labeled by an expert per 5 min. Using the method, we 
could reproduce the general trend of the interictal spiking as it 
was observed by the expert (correlation coefficient of 0.96). 
 
Introduction 
 
 Epilepsy is a neurological disorder characterized by 
abnormal electrical discharges in the brain. The clinical 
manifestation of epilepsy is the epileptic seizure. In 
most cases, the seizures can be controlled by anti 
epileptic drugs. However, for some patients with partial 
epilepsy, one has to resort to surgery in order to make 
the patient seizure free. These patients are submitted for 
a presurgical evaluation in order to identify the onset 
zone of the seizures (i.e., the epileptogenic zone). Part 
of this presurgical evaluation is the invasive EEG 
(electroencephalogram) monitoring, which is defined as 
the long-term recording (during several days or weeks) 
of the electrical brain activity using intracranial or depth 
electrodes [1]. 
 Typically, only the ictal episodes in the intracranial 
EEG recordings are used for analysis, because one is 
primarily interested in the onset zone of the seizure, 
although the interictal episodes might also contain 
relevant and useful information. For instance, during the 
interictal episodes, epileptiform discharges can be 
observed, but the exact relationship between the 
occurrence of these discharges and the occurrence of the 
seizures is still unknown. However, a visual analysis of 
the whole EEG recording is too tedious and time 
consuming, so the need for an automatic analysis 
algorithm is evident. 

 In the past, much research has already been devoted 
to the detection of epileptiform activity, mostly in scalp 
EEG recordings. These detection methods usually rely 
on the description of some spike-like waveform [2], and 
require the setting of a number of threshold values. 
However, given that no real consensus exists on the 
definition of the epileptiform activity in intracranial 
EEG recordings, and the fact that the choice of the 
threshold values is rather arbitrary and subjective, these 
methods are not readily applicable to long-term 
intracranial EEG recordings. Other methods aim at 
understanding the relation between different electrode 
sites and search for activation patterns [3], rather than 
search for trends in the interictal epileptiform activity 
over time. 
 In this paper we present a method that can be useful 
to analyze and summarize long-term intracranial EEG 
recordings. Possibly the method might be used to reveal 
some trend(s) in the interictal epileptiform activity over 
time and answer some medical questions regarding the 
relationship between ictal and interictal activity. 
 
Materials 
 
 For the development and a first evaluation of the 
method, we used one long-term intracranial EEG 
recording of one patient with refractory epilepsy. This 
recording was part of a study in which a protocol was 
designed, based on the analysis of intracranial evoked 
potentials (EP), to perform long-term monitoring of 
neuronal excitability in the human hippocampus [4].
 The EEG was recorded during two weeks, using four 
standard depth electrodes (placed in the left and right 
hippocampus and amygdala) which each contained four 
electrode contact points. The EEG was recorded with a 
sampling frequency of 200 Hz, and 0.1-30 Hz band-pass 
filtered. 
 The aforementioned study also assessed the short- 
and long-term variation in hippocampal excitability and 
its relation to interictal and ictal events. To that end, the 
EEG recording was analyzed by an expert who visually 
labeled, for 15 hours of the recording, the interictal 
epileptiform activity. This labeling was used to evaluate 
the performance of the proposed method. 
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Figure 1: An example of one EP stimulation artefact. The position of 
the artefact is marked with a black line (at sample 431). The beginning 
and ending of the artefact (100 ms before and 1250 after the artefact 
position) are marked with, respectively, a blue and red line. 
 
Method 
 
 The method performs the analysis on one channel of 
the intracranial EEG recording (LH0-LH1, LH = left 
hippocampus), which we denote by [ ]nx . The method 
consists of four steps. 
 
 I. Removal of EP stimulation artefacts   Because of 
the evoked potential stimulation, every (approximately) 
10 sec. (2000 samples) the intracranial EEG recording is 
disturbed by an electrical stimulation artefact. Since the 
presence of these artefacts severely hampers the 
detection of the epileptiform discharges, in the first step 
of the method this artefact is removed. To make this 
step fully automatic, we first search for the starting 
point of the first EP artefact by looking at the maximum 
of the following cost function, which aligns a comb 
function (with three combs) with the positions of the 
first three EP artefacts: 
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first of the three combs of the comb function. This comb 
function was chosen because of the particular waveform 
of the EP stimulation artefact (see Figure 1). We define 
the position of an artefact by the minimum of the 
artefact. Once the position of the first artefact is found 
(i.e., after the initialization step), the positions of the 
other artefacts are found one by one, by searching for 
the minimum of the EEG in a neighborhood of 3 
samples around the time instance 10 sec. after the 
previously found position. By realigning every step on 
the minimum of the artefact, we compensate for the fact 
that the stimulation does not occur every time precisely 
10 sec. after the previous one (also, the time between 
two consecutive stimulations changes slightly over 
time). Furthermore, during some periods of the 
registration no EEG was available. Every time this 
occurs, the pointer to the current artefact position was 
automatically reinitialized. 

 For every artefact, the EEG in a window of 1350 ms 
around the artefact position (100 ms before and 1250 ms 
after the artefact position) was discarded. 
 
 II. Detection  In the detection step we search for 
phenomena that deviate from the background EEG 
activity. We assume that the background activity has a 
Gaussian distribution, and calculate a robust estimate of 
its parameters based on the 25th and 75th percentiles of 
the data: 
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 Both parameters are estimated adaptively using a 
moving window and are used to mark EEG samples that 
deviate from the background activity as follows. First 
µ� and σ� are initialized using the first 4 min. of the 
EEG and equation (3) and (4). Next, in a moving 
window (length 0.5 sec., non-overlapping), EEG 
samples for which [ ] σγµ �*�−<nx  holds are marked 
(i.e., a detection of the negative peaks in the EEG signal 
that deviate from the background activity), with γ  set to 
3 or 5 (see below). If no time instances are marked, and 
if there are no samples for which [ ] σγµ �*�+>nx  
obtains (i.e., we can assume that the current window 
only contains background EEG), the EEG samples from 
the current window are added to a background EEG 
buffer of 2 min., or, once the buffer is full, the oldest 0.5 
sec. of EEG data that were placed in the buffer, are 
replaced by the samples from the current window. As 
soon as the buffer is full, for each position of the 
moving window, µ� and σ� are estimated using the 
current data in the background EEG buffer. 
 The list of marked time instances is then post-
processed as follows: (i) Consecutive time instances are 
replaced by the time instance that corresponds to the 
local minima in the EEG; (ii) In this new list of time 
instances, time instances that are closer then 400 ms of 
each other are replaced by the first time instance.  
 At this step in the algorithm, one can decide to 
include extra restrictions on the detected time instances 
(and the corresponding waveforms in the EEG) in order 
to increase the selectivity of the detection step with 
regard to the interictal epileptiform activity we are 
interested in. However, since we don’t have any (a 
priori) knowledge on the epileptiform waveform(s), we 
decided to run the algorithm twice. In the first run, we 
set γ  to 5, without any additional restrictions on the 
detected time instances or waveforms, and observed the 
obtained waveforms after clustering (see next step). 
Based on the judgment of the expert, we could easily 
identify the epileptiform discharges, and add the 
following (extra) criteria to increase the selectivity: (iii) 
the minimum of the waveform should precede the 
maximum, and their time difference should not be 
greater then 90 ms; (iv) the amplitude of the maximum 
should be at least half the amplitude of the minimum. 
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Figure 2: EEG fragment of 20 sec. Beginning and ending of the EP stimulation artefacts (around time instances 23:01:29 and 23:01:39) are marked 
with, respectively, a blue and red line. Detections are marked with a purple line. The adaptive amplitude threshold is shown in black. 
 

 
 
Figure 3: The evolution over time of the adaptive detection threshold σµ �*5�− , shown for the last 18 hours of the EEG recording. 

 
 In the second run, we used these two additional 
criteria to increase the selectivity, and set γ  to 3 to 
increase the sensitivity. 
 
III. Clustering and modeling of detected waveforms  
After the detection step, we search for recurrent patterns 
in the detected phenomena. We model the detected 
waveforms using a Gaussian mixture model (GMM) 
with full covariance matrices. The GMM parameters 
were estimated using the expectation-maximization 
(EM) algorithm, initialized with the results of Ward’s 
hierarchical clustering algorithm [5,6,7]. 
 The clustering proceeds as follows. For every 
detected time instance, we obtain a one dimensional 
signal by observing the EEG in a window of length 225 
ms around the marked time instance (i.e., 45 samples, 
starting 19 samples before the detected time instance, so 
that all signals are aligned on the negative peak at 
sample 20). Each signal was normalized through 
division by the Euclidean norm, and these signals were 
stacked into a pattern matrix. To reduce the 
dimensionality of the feature space, a singular value 
decomposition (SVD) was performed, and we retained 
as many components as necessary to explain at least 
95% of the signal’s energy. A proximity matrix was 
constructed using the Euclidean distances between 
every signal and this proximity matrix was input into 
Ward’s (minimum variance) hierarchical clustering 
algorithm. As a result we obtain a dendrogram that 
gives a visual representation of the hierarchy of the 
obtained clusters. To decide on the number of clusters 
(i.e., to decide on the specific level at which to cut the 
dendrogram), we used the stopping rule as found in [8], 
with k  set to 8. This setting resulted in a plausible 

estimate of the number of clusters. Based on this 
clustering, we calculated for each cluster the maximum 
likelihood (ML) estimate of the mean and (full) 
covariance matrix, and used these to initialize the EM 
algorithm. The number of clusters was small enough so 
that each cluster contained sufficient signals to estimate 
the parameters of the GMM. Next, all waveforms were 
classified into classes using the Bayesian classification 
rule (i.e., according to the highest a posterior 
probabilities computed from the constructed GMM). 
 
 IV. Visualization of the results We plotted the 
number of detections per 5 min. to display the general 
trend of the epileptiform discharges as a summary of the 
interictal epileptiform activity in the EEG recording. We 
also plotted all detected waveforms per cluster/class so 
that the expert can decide which clusters/classes contain 
epileptiform signals. 
 
Results 
 
 Figure 2 shows the results, on a fragment of 20 sec. 
of the recording, of the first run of the method. The EP 
stimulation artefacts and detection time instances are 
marked, together with the adaptive amplitude threshold. 
Figure 3 depicts the variation of the threshold over the 
last 18 hours of the recording. 
 Figures 4, 5 and 6 show the output of the first run of 
the method. In the detection step we obtained 2521 
waveforms. Using the stopping rule with k  set to 8, the 
number of clusters was 6 (in Figure 6, the clusters are 
plotted from left to right and from top to bottom, 
according to the order of the clusters in the dendrogram 
as shown in Figure 4). Clusters 3, 6 and 5 were 
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Figure 4: Dendrogram of the hierarchical clustering for the first run of 
the algorithm (γ = 5, no additional restrictions on the detected time 
instances/waveforms). 
 

 
 
Figure 5: Application of the stopping rule. The figure shows the 
distance between the clusters iα  aggregated at step i  in the 

hierarchical clustering algorithm for the first run of the algorithm. The 
red dots show the predicted increase, the red line shows the threshold 
that indicates a significant increase of iα . 

 

 
 
Figure 6: Results of Ward’s hierarchical clustering algorithm for the 
first run of the algorithm: plot of all detected waveforms (in blue; the 
number of signals is shown in brackets), the mean (in red) and median 
(in yellow) per cluster.  
 

 
 
Figure 7: Dendrogram of the hierarchical clustering for the second run 
of the algorithm (γ = 3, with the additional restrictions (iii) and (iv) 
on the detected time instances/waveforms). 

 
 
Figure 8: Results of Ward’s hierarchical clustering algorithm, for the 
second run of the algorithm: plot of all detected waveforms (in blue; 
the number of signals is shown in brackets), the mean (in red) and 
median (in yellow) per cluster. 
 

 
 
Figure 9: Classes obtained using the Bayesian classification rule with 
the constructed GMM, for the second run of the algorithm: plot of all 
detected waveforms (in blue; the number of signals is shown in 
brackets), the mean (in red) and median (in yellow) per class.  
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Figure 10: Number of labeled epileptiform discharges per 5 min. (‘Expert’, in blue), number of detections of the method per 5 min. (‘Method’, in 
green), and the difference between both (‘Error’, in red). 
 
 

 
 
Figure 11: Scatter plot of the number of labeled epileptiform 
discharges per 5 min. (‘Expert’, x-axis) versus the number of 
detections of the method per 5 min (‘Method’, y-axis). 
 
recognized as genuine epileptiform activity, and these 
waveforms led to the formulation of the two extra 
criteria (iii) and (iv) in the detection step. 
 Figures 7, 8 and 9 show the output of the second run 
of the method.  In the detection step, the method marked 
17197 waveforms, from which 14509 could be rejected 
based on the extra criteria (iii) and (iv). From Figure 9, 
which shows the classes obtained with the GMM, the 
expert identified the classes 6, 7, 3, 2 and 4 as 
epileptiform waveforms. Figure 10 shows the number of 
detected waveforms in these classes per 5 min. versus 
the number of labeled epileptiform discharges per 5 
min. (mean number of events in the expert labeling: 11 
events per 5 min.), together with the error between 
them. We can observe that the general trend of the 
epileptiform activity is recovered. To quantify the 
differences, we calculated the following error measures: 
the mean absolute difference, the correlation coefficient 
and the relative residual energy, and obtained, 
respectively, 2.37 events/5 min., 0.96 and 0.046. Note 
that these figures depend on the length of the time 
interval over which the events are summed. We choose 
a time interval of 5 min. because it is precise enough to 
see the general trend. The correspondence between the 
results of the method and the expert labeling can also be 
appreciated from Figure 11. 
 
 

Discussion and conclusions 
 
 The main difficulty of a method such as the one 
presented here, lies in the evaluation and validation of 
the method. Since there is no clear consensus on the 
definition of epileptiform activity in the intracranial 
EEG, it comes of no surprise to find a poor agreement 
between the epileptiform labelings from different 
experts. Therefore, a comparison of the detection results 
with a visual labeling of the epileptiform discharges by 
an expert, is not straightforward, nor conclusive. 
 In fact, the method can not be seen as a replacement 
of a visual analysis, because at present nobody is doing 
such an full and elaborate visual analysis of the 
intracranial EEG recordings. The method should not be 
thought of as an epileptiform detection method as such, 
but rather as a method that tries to summarize the whole 
EEG recording in a meaningful way and that might 
point to some trend(s) in the long-term EEG recording. 
 We used the labeling of one expert to have a first 
indication on the performance and usefulness of the 
method. Using the method in two runs, and with a visual 
identification of the epileptiform classes in the GMM, 
we could reproduce the general trend of the interictal 
spiking as it was observed by the expert. 
 Future research will aim at further automating the 
method in order to arrive at a self-contained algorithm 
that can be used to automatically analyze and 
summarize the interictal activity in intracranial EEG 
recordings. In particular, other EEG recordings will be 
used to check whether the choices made in the current 
analysis (e.g., the additional detection criteria, the 
stopping rule, etc.) generalize. Also the constructed 
probabilistic model (GMM) will be further exploited to 
automate the detection, characterize the obtained 
detection results and investigate the long-term evolution 
of the epileptiform patterns. 
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