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Abstract: This paper addresses the problem of fetal
electrocardiogram (FECG) extraction. A novel algo-
rithm is proposed, which takes advantage of the non-
stationarity nature of ECG signal. The FECG prob-
lem is formulated in a state - space form. This leads
to an iterative algorithm. The algorithm was tested
in a real life example. Visual test results are obtained
and show that the proposed algorithm is capable of
reliably extracting the FECG beats.

Introduction

Physiological signals may not be directly measurable and
we might have to determine the signal from measurable
complex signals. Fetal Electrocardiogram (FECG) be-
longs to this category of signals. The FECG must be
extracted from the abdominal ECG which is dominated
by the maternal ECG. FECG contains information on the
condition of the fetus. Routine examinations such as eval-
uation of fetal heart rate might prove a significant tool for
the doctor for pregrancy monitoring.

Several approaches have been proposed in the liter-
ature addressing FECG extraction. Windrow et al. [1]
propose an adaptive filtering and adaptive noise cancel-
lation method to extract FECG from the composite ma-
ternal ECG (MECG). Multiple MECG signals obtained
from the chest leads were used to cancel the MECG com-
ponent identified as noise in the composite MECG signal.
Blind Source Seperation (BSS) methods have also been
used for FECG extraction [2, 3]. This is illustrated in [2]
where a two stage BSS algorithm is shown to be superior
to Widrow’s method. In [3] the performance of high or-
der Independent Component Analysis (ICA) methods and
Principal Component Analysis (PCA) is reported. The
wavelet transform is used in [4] to separate sources in the
time-scale domain. The FECG extraction is modeled as a
BSS problem assuming that the mixed sources are statis-
tically time invariant. However, source nonstationarity is
a characteristic of biomedical signals. In our case, heart
rate varies with time.

ECG recordings from a pregnant woman are affected
by various bioelectric sources and noise. As indicated
in [3] the measurements can be considered as instanta-
neous linear mixtures of signals generated by underlying
bioelectric phenomena and the noise can be taken into
account as an additive pertubation.

In this work we present a method for the extraction
of FECG from the abdominal ECG, introducing nonsta-
tionarity for the sources and using a Bayesian PCA ap-
proach. Our work is based on the approach proposed
in [5]. The authors demonstrate how the principal axes
of a set of observed vectors of data can be determined
through maximum likelihood estimation of a latent vari-
able model, which is called propabilisitc PCA (pPCA).
However, their approach is limited to stationary sources,
which is not realistic and it is addressed in our work. The
pPCA model is formulated in a state - space form and the
Expectation - Maximization algorithm is used to derive
the maximum likelihood (ML) values of the parameters.
The above procedure is extended also to a bayesian ap-
proach.

Methods and Materials

A latent variable model seeks to relate ad-dimensional
observation vectory to a correspondingq-dimensional
vector of latent variablesx:

y = Wx+n (1)

Thedxq matrixW relates the observation and latent vari-
ables vectors. The latent variables are defined to be in-
dependent and Gaussian with unit variance, i.e.x ∼
N(0, Iq), whereIq is theq-dimensional unit matrix. The
noise model,n, is Gaussian, i.e.n ∼ N(0,Ψ). The ob-
servations follows a Gaussian, i.e.y ∼ N(0,WW T + Ψ).
The model parameters,W andΨ, may thus be determined
by maximum likelihood. Since there isn’t closed form
analytic solution, their values may be obtained via an it-
erative procedure. It can be proved [5] that in the case of
isotropic noise model, i.e.n ∼ N(0,σ2Id), the stationary
points of the log likelihood with respect toW satisfy:

WML = Uq(Λq −σ2Iq)
1/2 (2)

where the columns ofUq are the eigenvectors of sample
covarianceS, with corresponding eigenvalues in the diag-
onal matrixΛq. It has also been proved that the maximum
of likelihood is achieved when theq largest eigenvalues
of S are chosen so that the columns ofUq correspond to
the principal eigenvectors. Also, it can be shown that in
the limit σ2 → 0 the conventional PCA is recovered.

The pPCA is formulated by Eq. (1). To derive a dy-
namic version of the above model the latent variablesx



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 must evolve with time. If the evolution in time is linear
then we have the following dynamical linear model:

x[t] = x[t −1]+v (3)

y[t] = Wx[t]+n (4)

wherev ∼ N(0,σ2
v I) andn ∼ N(0,σ2I). The log likeli-

hood of the data is:

logp(X ,Y ) = −
N

∑
t=1

1
2σ2 (y[t]−Wx[t])T (y[t]−Wx[t])

−
Nq
2

logσ2−
(N −1)q

2
logσ2

v

−
N

∑
t=2

1
2σ2

v
(x[t]−x[t−1])T (x[t]−x[t−1]) (5)

where N is the number of samples, Y =
{y[1],y[2], · · · ,y[N]} and X = {x[1],x[2], · · · ,x[N]}.
The log likelihood logp(X ,Y ) is a function of the
parametersW and σ2, The variableσv is supposed to
be a known quantity. If the value of parameters are
known the latent variablesx can be calculated using the
Kalman Smoother. However, the values ofW and σ2

is not known in advance. Thus, we employ maximum
likelihood (ML) to estimateW and σ2. A common
technique for ML estimation of the parameters is the
Expectation - Maximization (EM) algorithm [7]. The
EM algorithm alternates between estimating the latent
variables given the current model and refitting the model
given the estimated, complete data. More specifically,
the EM algorithm constitutes from two steps: the E -
step and the M-step. In the E-step the expectation of the
log likelihood of complete data is calculated given the
observations and the current values of parameters. In the
M-step the maximization of the expected log likelihood
with respect to parameters is performed. These two steps
are iterated until convergence.

To calculate the expected log likelihood,
E{logp(X ,Y )|Y}, we define the following conditional
mean:

x̂[t] = E{x[t]|Y}, (6)

and the conditional covariance:

P[t] = E{(x[t]− x̂[t])(x[t]− x̂[t])T |Y} (7)

Calculating the expectations in the log likelihood and dis-
carding terms irrelevant of the parametersW andσ2 we
have:

L(W,σ2) ∝ −
N

∑
t=1

1
2σ2

[

y[t]y[t]T −2y[t]TW x̂[t]+

tr(W TW < x[t]x[t]T >)

]

−
Nd
2

logσ2 (8)

Maximizing the log likelihood with respect toW andσ2

we obtain:

Ŵ =

[ N

∑
t=1

y[t]T x̂[t]

][ N

∑
t=1

(P[t]+ x̂[t]x̂[t]T )

]−1

, (9)

σ̂2 =
1

Nd

N

∑
t=1

(

y[t]T y[t]−2x̂[t]TW T y[t]+

tr(W TW (P[t]+ x̂[t]x̂[t]T ))

)

. (10)

The Eqs. ( 9, 10), consists the M - step. The E - step re-
lated to the calculation of conditional meanx̂[t] and con-
ditional covarianceP[t]. Those are calculated using the
Kalman Smoother recursions (see Appendix A). Alterna-
tivelly an approximation to the above expectations may
be obtained with Kalman Filter [8].

A bayesian treatment of a model is obtained by first
introducing a prior ditribution over the parameters of the
model. Then the posterior distribution is obtained by
multiplying the prior by the likelihood function. Finally
the predictive density is obtained by marginalizing over
the parameters. To implement this framework we must
address two issues: (i) the choise of a prior and (ii) the use
of a tractable algortihm. In this work we focus to control
the effective dimensionality of the latent space. This may
be achieved by the use of a hierarchical priorp(W |α)
over the matrixW , governed by the vector of hyperpa-
rametersα = {α1,α2, · · · ,αd−1}. Each hyperparameter
controls one of the columns ofW through a conditional
distribution:

p(W |α) =
d−1

∏
i=1

(

αi

2π

)d/2

exp

(

−
αi

2
‖ wi ‖

2
)

(11)

Eachαi control the inverse of the variance of correspond-
ing wi. If an αi is concentrated on large values, the cor-
respondingwi tends to be small, this means that the cor-
responding direction will be ”switched off”. This formu-
lation of prior is reported as Automatic Relevance Deter-
mination (ARD)[9]. We treat the parameterσ2 as a deter-
ministic variable and not as a random variable, so it can
be determined by maximum likelihood. To use this model
we must marginalize over the posterior distribution ofW .
In this case the solution is analytically intractable and we
employ approximation methods. One such method is the
local Gaussian approximation to a local mode (type - II
maximum likelihood,[9]). The modeWMP can be found
by maximizing:

logp(W |D) = L(W,σ2)−
1
2

d−1

∑
i=1

αi ‖ wi ‖
2 (12)

This leads to:

WMP =

[ N

∑
t=1

y[t]T x̂[t]

][ N

∑
t=1

(P[t]+ x̂[t]x̂[t]T )+ σ2A

]−1

(13)

where A is diagonal matrix with elements
{α1,α2, · · · ,αd−1}. To estimate α we maximize
the marginal likelihood in which we have integrated over
W using a quadratic approximation (type - II maximum
likelihood)[9], [10]. This leads to the estimation formula
of the form:

αi =
d

‖ wi ‖2 (14)
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 where we have supposed that all model parameters are
”well - determined”. In the bayesian approach the learn-
ing algorithm proceeds with repeated application of Eqs.
(6, 7,10,13,14). Optimization ofW andσ2 is alternated
with the estimation ofαi using Eq. (14) until all para-
meters satisfy a covergence criterion. The above iterative
algorithm does not gaurantee local maximization of like-
lihood, although convergence is achieved.

In our case the vectory represents the abdominal ECG
measurements and the latent variablesx are the underly-
ing biolectric phenomena, i.e. MECG and FECG. The
estimation of bioelectric phenomena, and hence the esti-
mation of FECG, is a by-product of the proposed algo-
rithm.

Results

To investigate the effectiveness of the proposed algorithm
experiments were conducted on real ECG signals [11].
These signals represent 5 sec. recordings from eight dif-
ferent skin electrodes located on different points on a pre-
grant woman’s body with sampling frequency 500 Hz.
Five of these signals were obtained from the mother’s ab-
dominal region while the other three were obtained from
the mother’s thoracic region. In all experiments we use
σv = 1. For the initialization ofW we use the maxi-
mum likelihood solution, while the initialization ofσ is
random. Fig. 1 depicts 5 sec. of these signals while
Fig. 2 depicts the extracted sources using the proposed
algorithm. As we can see the seventh and sixth source
contains the MECG component, the fifth source contains
the FECG component, the fourth source contains a sig-
nal that is composed by a low frequency component and
contibutions from the MECG signal, the third and second
sources contain mainly noise contributions. Finally, the
first source is a low periodic signal and deserves further
medical interpretation, it might e.g. be due to the respira-
tion.
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Figure 1: ECG recording of a pregnant woman

To show how the proposed approach extracts the
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Figure 2: Extracted Sources using the proposed algorithm

FECG component from the composite ECG we provide
with three representative examples. The first example
contains non overlapping FECG beats, the second par-
tially overlapping FECG beats and the third example fully
overlapping FECG beats. In Fig. 3(a) we can see three
nonoverlapping FECG beats and two MECG beats. Fig.
3(b) depicts the extracted FECG signal, which clearly
shows the FECG beats by supressing the MECG beats.
In Fig. 4(a) we can see three nonoverlapping FECG
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Figure 3: (a) Composite ECG and (b) Extracted FECG .

beats, one partially overlapping FECG and two MECG
beats. Fig. 4(b) depicts the extracted FECG signal,
which clearly show the FECG beats by supressing the
MECG beats. A more difficult situation is presented in
Fig. 5, where one FECG beat is fully overlapping with
one MECG beat. Fig. 5(a) depicts the composite sig-
nal which contains one FECG beat fully overlapping with
one MECG beat (first MECG beat).
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Figure 4: (a) Composite ECG and (b) Extracted FECG.
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Figure 5: (a) Composite ECG and (b) Extracted FECG.

Discussion

Fig. 6(a) depicts the first recording which contains FECG
beats as well as MECG beats. Fig. 6(b)-(c) depict
the extracted FECG using the proposed method, Prin-
cipal Component Analysis and Independent Component
Analysis, respectively. As we can observe the proposed
method presented comparative results with that of ICA,
while both methods presented superior results compared
to PCA. The proposed method and ICA supressed the
MECG beats very well while the PCA source for FECG
contains contributions from the MECG beats.

As reported in [3] only the different sources subspaces
have to be separated, instead of all source components.
This leads to a reduction of computional cost without
loss of medical information. Fig. 7 depicts this situa-
tion where only four sources have been estimated instead
of the seven sources of previous experiments. As we ob-
serve the signal depicted in Fig.7(b) contains the FECG
contributions, MECG is presented in Fig.7(c)-(d), while
the noise components are concentrated in the signal de-
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Figure 6: (a) Composite ECG, (b) Extracted FECG using
the proposed algorithm, (c) Extracted FECG using PCA
and (d) Extracted FECG using ICA

picted in Fig.7(a).
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Figure 7: (a)-(d) Extracted sources using the proposed
algorithm

In many practical situations the use of a sequential
algorithm is essential, i.e. in real time applications. In
our case the algorithm iterates between state estimation
using Kalman Smoother and parameter identification. To
obtain a sequential version of the above algorithm we can
replace the Kalman Smoother equations with the Kalman
Filter equations. However, this is beyond the scope of
present study and is the subject of our future work.

Conclusions

In this paper a method for the extraction of the FECG is
presented. The FECG problem formulated as a BSS prob-
lem with nonstationary sources. The BSS problem was
defined as a special case of a linear dynamical model. As
a result, and based on the assumptions we have made,
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 we finally have an iterative algorithm. In the limiting
case the algorithm coincides with conventional PCA. The
algorithm was tested on eight leads ECG data and re-
sulted in efficient FECG extraction. The algorithm has
shown excellent separation of nonoverlapping FECG and
MECG beats, and it was also capable of separating com-
pletely overlapping FECG and MECG beats. In the fu-
ture we intend to introduce a more general formulation of
the particular state-space model and the use of variational
bayesian method for the estimation of the parameters and
the sources, and a sequential version of it.
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Appendix A

The Kalman Smoother estimator

xn
t = E{xt |y1,y2, · · · ,yn} (15)

for the model defined by equations ( 3, 4) is obtained by
minimizing the mean square error

Pn
t = E{(xt −xn

t )(xt −xn
t )

T |y1,y2, · · · ,yn} (16)

The estimator can be obtained recursively using the fol-
lowing equations [12]. Fort = 1, · · · ,n we have:

xt−1
t = xt−1

t−1, (17)

Pt−1
t = Pt−1

t + Q, (18)

Kt = Pt−1
t W T (WPt−1

t W T + σ2)−1, (19)

xt
t = xt−1

t + Kt(yt −W T xt−1
t ), (20)

Pt
t = Pt−1

t −KtWPt−1
t , (21)

where we takex0
0 = µ andP0

0 = Σ andµ , Σ are the initial
values of the estimated quantities, arbitralily chosen. To
calculatexn

t andPn
t , we use the following set of recursive

equations fort = n,n−1, · · ·,1

Jt−1 = Pt−1
t−1 (Pt−1

t )−1, (22)

xn
t−1 = xt−1

t−1 + Jt−1(x
n
t −xt−1

t−1), (23)

Pn
t−1 = Pt−1

t−1 + Jt−1(P
n
t −Pt−1

t )JT
t−1. (24)
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