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Abstract: It has been suggested to expand
automated external defibrillators (AED) with
the ability to monitor the CPR performance
non-invasively and give feedback on possible
improvements online. Thoracic impedance
(TI) changes are closely correlated to the
lung volume changes and can be measured
through the AED pads. Measurements of
lung volume changes and corresponding TI
changes were used to explore the performance
of a theoretical feedback system. Ventilation
cycles were classified as having insufficient
(ω1), sufficient (ω2) or too large (ω3) amounts
of air according to international guidelines for
CPR ventilations. A classifier was evaluated
in the task of discriminating between the
classes by using TI-derived information, as
a feedback system would do. If the system
is tuned so that it gives correct corrective
feedback on 90% of insufficient ventilations,
73% of the ventilations accepted as sufficient
will truly be sufficient. The TI may give
some indication on the amount of air given
to the patient, but it is not advisable to use
impedance measurements for feedback on
tidal volume because of the low accuracy.

Introduction

Recent publications [1, 2] concerning CPR
quality has shown divergence from the recommen-
dations of Guidelines 2000 [3]. The main problems
are hyperventilations, low compression rates, too
shallow compressions and long pauses in CPR
[1, 2]. Aufderheide et al recently demonstrated that
rescuers consistently tend to hyperventilate out of
hospital cardiac arrest patients [4], and a pig model
has shown that increased tidal volumes adversely
affect cardiac output [5]. Other studies indicate
that the quality of CPR performance influences
the outcome [6, 7, 8]. To overcome the problem
of suboptimal CPR, Handley et al [9] suggested to
incorporate a feedback system in automated exter-

nal defibrillators (AED). Transthoracic impedance
(TI) changes are closely correlated to lung volume
changes [10, 11, 12]. During inspiration, TI in-
creases, while it decreases during expiration. By
monitoring the TI by means of the self-adhesive
defibrillator pads, it can be used for ventilation
assessment [13]. By analyzing the impedance signal
resulting from one ventilation cycle, the AED can
possibly give accurate feedback on whether the ven-
tilation is in accordance with Guidelines. We wish
to investigate the potential of using the impedance
signal for feedback on ventilation volume.

The relationship between inspired amount of air
and resulting impedance change is dependent on
body composition and therefore varies between pa-
tients [12]. In a cardiac arrest situation there are no
possibilities for calibration of the monitoring equip-
ment to fit the patient’s physiology, at the cost of
lowered accuracy in the feedback. In this paper we
look at the performance and accuracy of such a ven-
tilation feedback system using a pattern recognition
framework. The task of the framework is to classify
ventilations based on impedance measurements.

We first present the data material used in our
experiments. The classification problem is then
presented, followed by a description of the discrimi-
nating features to be extracted from the data. We
then present the framework used for evaluating the
classifier’s discriminating power. The results are
presented, followed by a discussion and a conclusion
of our work.

Materials and Methods

The study procedures were in accordance with the
ethical standards of the responsible committee on
human experimentation. Data was collected from
32 patients (23 male, median age of 50, interquartile
age 44-59) in hemodynamically stable controlled
mechanical ventilated conditions at the University
Clinic of Vienna municipal hospital. Weight ranged
from 50 to 120 kg (median 76, interquartile weight
65-89.5).
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Figure 1: The tidal volume distribution of the data set in (a) ml and (b) ml/kg.

All patients were ventilated with a ServoI�

Ventilator system (Version1.2, Siemens Medical
Group, Frankfurt, Germany), which also continu-
ously measured the respiratory volume. Sampling
rate was 100 Hz and dynamic range was 16 bits.
The resolution was 0.1 ml/bit. An investigational
monitor/defibrillator, based on a commercially
available monitor/defibrillator (Heartstart�4000SP,
Laerdal Medical, Stavanger, Norway) was used
for the impedance measurements in the study
. A 32 kHz sinusoidal excitation current, 3mA
peak-to-peak, was applied between the defibrillation
pads, and the resulting impedance was registered.
The resolution of the defibrillator impedance mea-
surement system was 0.74 mΩ/bit. Sampling rate
was 500 Hz and dynamic range was 16 bits. The
impedance measurements were downsampled to 100
Hz to be compatible with the volume measurements.
Heartstart�4000SP with the necessary analysis
software were provided by Laerdal Medical. The
thorax impedance measurements were recorded
using commercially available self-adhesive elec-
trode defibrillator pads (Heartstart Pads�, Philips
Medical Systems, Seattle, WA, USA). A low pass
equiripple FIR filter was used off-line for noise and
cardiogenic artifact reduction in the impedance
signal.

For each patient, the measurements were per-
formed for tidal volumes of 400, 600, 800 and 1000
ml, each for 2 minutes. The tidal volume (TV) is
the amount of air inhaled and exhaled during one
respiratory cycle, i.e. peak inspired volume for a
given respiratory cycle. 6 of the patients were not
ventilated at 800 ml due to changes of experimental
protocol, and the measurements at 1000 ml were
corrupted during transfer for one patient. 3 patients
were excluded because of no ventilations with TV
of 800 and 1000 ml. For each patient, 15 respiration
cycles for each TV were used for training and testing
of the classifier. The true range of the TVs, after

Table 1: CPR Ventilation Guidelines.
Recommended
tidal vol-
umes

Inflation
time, non-
secure air-
way

Mouth-to-mouth
ventilation

approx. 10
ml/kg or
700-1000 ml

2 sec

Bag-valve-mask
ventilation, with
oxygen

approx. 6-
7 ml/kg or
400-600 ml

1-2 sec

Bag-valve-mask
ventilation, with-
out oxygen

approx. 10
ml/kg or
700-1000 ml

2 sec

Table 2: Classifier definitions and class distribution
of the 1530 ventilations.

ω1 ω2 ω3

TV < 6 ml/kg TV > 6 ml/kg
OR TV > 400
ml

TV > 1000ml

AND AND

TV < 400 ml TV < 1000 ml

# of elements 277 1271 102

analysis of the collected data, were 300 ml to 1100
ml. This was due to transients when readjusting the
TV delivered by the ventilator. The TV distribution
of the data set are presented as histograms in
Figure 1. Figure 1(a) shows the distribution of
the ventilations in ml and Figure 1(b) shows the
distribution in ml/kg.

The recommendations for performing CPR venti-
lations are stipulated in [14], and are listed in Table
1. Based on these criteria, we define three classes.
A ventilation belonging to class ω1 is a ventilation
with TV below the CPR guidelines, that is below
400 ml and below 6 ml/kg. If the TV of a ventilation
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is above the guidelines (TV> 1000 ml), it belongs to
class ω3. Otherwise the TV is sufficient, and the ven-
tilation belongs to ω2. The definitions of the three
classes for the classifier are shown in Table 2, along
with the number of elements in each class.

The performance of a classifier can be evaluated
and visualized by means of Receiver Operating Char-
acteristics (ROC) graphs [15]. The area under the
ROC curve, AUC, is used as a measure of perfor-
mance, but this technique is only applicable to the
case of two classes. A method for using ROC curves
in the evaluation of multiple class classifiers was pro-
posed in [16]. The multiple class problem is divided
in all possible two-class problems, and the overall
performance, AUCtotal, is the mean AUC of the two-
class problems. This is expressed as

AUCtotal =
2

c(c − 1)

∑

i<j

AUCi,j (1)

where c is the total number of classes and AUCi,j is
the area under the ROC curve when discriminating
between elements from class ωi and ωj .

We now identify the features that are to represent
the impedance measurement of each respiration cy-
cle. The assumed most important discriminating fea-
ture for the classification problem is the TI change,
denoted dZ, from start of ventilation to top of ven-
tilation. Because of the varying relation between
respiration and impedance change between patients
[10, 11], this does not give exact information on the
TV. For a TV of 400 ml, the resulting impedance
change might vary from 0.3 to 1.1 Ω depending on
the patient. We therefore need other features that
can help improve the classifier.

Studies of the respiration curve normalized so that
the maximum amplitude equals 1 indicate that the
expiration curve may contain information related to
the TV. It is observed that the expiration curve has
a slower decline for ventilations with high TV than
for low TV, with TV expressed in ml. This is illus-
trated in Figure 2.One way of exploiting this is by
performing polynomial regression, and use the poly-
nomial coefficients to represent the expiration curve
in the feature space. The goal is a good representa-
tion of the curve’s shape while keeping the number of
coefficients low, and thereby containing the discrim-
inating information in as few parameters as possible.
We let x = [x1, x2, ..., xN ]T represent the normalized
expiration curve, and let t = [t1, t2, ..., tN ]T repre-
sent the time instants of x and where t1 = 0. N is
the number of samples. The polynomial of order P
that best fits x in a least squares sense can then be
found by solving

Ta = x (2)

where T is a P × N matrix with t(p−1) =
[t(p−1)

1 , t
(p−1)
2 , ..., t

(p−1)
N ]T as the p’th column, and

a = [a0, a1, ..., aP−1]T is vector consisting of the
polynomial coefficients. We let b0 and b1 represent
the coefficients of a 1. order polynomial found as de-
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Figure 2: The expiration curve shape dependence on
the tidal volume.

scribed in Eq. (2). b0 and b1 are used as features in
the classification.

A time-normalized version of x may also be used
in the same way. The signal is then resampled to a
duration of 1 second, where the resampling factor is
given by

R =
Nnew

Nold
(3)

Nold and Nnew is the number of samples represent-
ing the expiration curve before and after resampling.
Polynomial regression can also be performed on the
resampled expiration curve and give new features.
The features c0, c1, c2, c3, d0 and d1, representing
the coefficients of a 3. and 1. order polynomial found
as described in Eq. (2) of the resampled expiration
curve, are used in the classification.

From Figure 2 it is seen that higher TV leads to
longer duration, and thereby higher energy spread,
of the expiration curve. In [17] an energy measure of
the signal length is referenced. It relates how the en-
ergy of the signal is distributed over its duration.
The general definition of the energy measure, de-
noted SL, is

SL =
∑N−1

n=0 w(n) · x2(n)
∑N−1

n=0 x2(n)
(4)

where x(n) is the signal and w(n) is a non-decreasing,
positive weighting function with w(0) = 0. We use
w(n) = n, and use SL in the classification.

We now have many possible ways of combining
the proposed features, but it is desirable to minimize
the number of feature combinations before present-
ing the data to the classifier. Many methods have
been proposed to determine the best subset [18]. We
use the approach of examining the feature space V
spanned by the extracted features v, and evaluate
how separable the given classes seem to be. This is
done by relating the variance within the classes to
the distances between the class centers. The mean-
squared within-class distance V 2

i between samples v
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Table 3: Classifier performance represented by the mean (standard deviation) AUC.
Features AUCtotal h1 AUC1,2 h1 AUC1,3 h1 AUC2,3 h1

v1 = [dZ] 0.869 (0.062) 1.7 0.868 (0.063) 1.2 0.981 (0.058) 1.7 0.783 (0.132) 1.5

v2 = [dZ, SL, b0, b1] 0.876 (0.058) 2.0 0.871 (0.052) 1.2 0.984 (0.041) 2.0 0.776 (0.123) 2.0

v3 = [dZ, SL] 0.889 (0.049) 2.0 0.861 (0.049) 2.0 0.992 (0.019) 2.0 0.813 (0.110) 2.0

v4 = [dZ, c0, c1, c2, c3] 0.858 (0.071) 1.9 0.865 (0.056) 1.7 0.973 (0.061) 1.9 0.726 (0.148) 1.9

v5 = [dZ, SL, c0, c1, c2, c3] - (-) - 0.866 (0.055) 1.9 0.988 (0.028) 1.5 - (-) -

v6 = [dZ, d0, d1] 0.880 (0.064) 2.0 0.869 (0.082) 1.8 0.986 (0.048) 2.0 0.787 (0.121) 2.0

v7 = [dZ, SL, d0, d1] 0.872 (0.052) 1.7 0.877 (0.042) 1.7 0.992 (0.018) 1.8 0.752 (0.131) 1.7

v8 = [dZ, d0, d1, R] 0.861 (0.078) 2.0 0.860 (0.052) 1.1 0.983 (0.052) 1.5 0.764 (0.126) 1.8

v9 = [dZ, SL, d0, d1, R] 0.852 (0.054) 1.9 0.872 (0.060) 1.9 0.981 (0.044) 1.9 - (-) -

v10 = [dZ, R] 0.867 (0.062) 1.7 0.863 (0.058) 1.7 0.980 (0.053) 1.7 0.777 (0.132) 1.0

of class i and the corresponding class mean µi is

V 2
i = E{|v − µ|2|i} = var{v|i} = trace[Σi]. (5)

The mean of these within-class squared distances V 2,
when assuming equiprobable classes, is

V 2 =
1
c

c∑

i=1

V 2
i . (6)

The mean-squared between-class distance, denoted
D2, for equiprobable classes is

D2 =
1

c(c − 1)

c∑

i=1

c∑

j=1

|µi − µj |2 (7)

A measure of separability is then derived as the ratio

Q =
V 2

V 2 + D2
0 ≤ Q ≤ 1 (8)

ranging from 0 to 1. Q → 0 indicates optimum sep-
arability, while Q → 1 indicates inseparability. This
value is computed for a number of feature combi-
nations, and the best ones are used in the training
and testing of the classifiers. Using the proposed
classes and features, we want to evaluate how well a
classifier will discriminate between the classes. The
most important discriminating feature is according
to the results dZ. Since the relationship between
TV and dZ is patient-dependent, so is the perfor-
mance of a classifier. The training and test set is
therefore divided patient-wise, and cross-validation
[15] is performed. 5 randomly selected patients are
in the test group and the remaining 21 patients are
in the training group. It is assured that every patient
is represented in the test data at least twice, so we
end up with 52 training and test sets.

The Parzen window technique [15] is used to esti-
mate the class dependent probability p(v|ωj) of all
the ventilations for each of the three classes. It is
computed as an average of normal densities centered
at the samples:

p(v|ωj) =
√

ni

ni

ni∑

n=1

1√
2πh2

1

e
− ni

2h2
1
(v−vn)2

(9)

Here ni is the size of the training set of class ωi.
The window size h1 should be adjusted so that good
generality is achieved, that is

|Mtest set − Mtraining set| < τ (10)

where Mtest set and Mtraining set is some chosen mea-
sure (in our case AUC) of the classifier’s performance
on the test and training set. For our setup we use
τ = 0.05, and calculate the performance of the clas-
sifier for h1 ∈ {1.0, 1.1, ..., 2.0}.

As proposed in [16] the original 3-class problem
is divided in three 2-class problems. Bayes decision
rule for minimizing the overall risk for a two-category
classification problem is to decide ωi if

(λji − λii)p(v|ωi)P (ωi) > (λij − λjj)p(v|ωj)P (ωj)
(11)

and otherwise decide ωj [15]. P (ωi) is the a priori
probability of v ∈ wi. λij is the cost of deciding that
v ∈ ωi, when in fact v ∈ ωj . By adjusting the costs,
we can get (λji − λii)P (ωi) and (λij − λjj)P (ωj) to
assume any value we want. We let (λji−λii)P (ωi) =
ci and (λij − λjj)P (ωj) = cj , and reformulate the
decision rule to decide ωi if

ci · p(v|ωi) > cj · p(v|ωj) (12)

and otherwise decide ωj . For a choice of ci and cj

we can now calculate the sensitivity and specificity
of our training and test set, expressed as [17]

sensitivityi =
# of correct classifications where v ∈ ωi

ni
(13)

and

specificityi =
# of correct classifications where v /∈ ωi∑

j �=i nj
,

(14)
where ni is the number of elements belonging to class
ωi, and thereby points in the ROC graph. We use
ci + cj = 1 and ci ∈ {0, 0.001, 0.002, . . . , 0.999, 1}
to ease implementation in computation of the ROC
graphs. The area under the ROC graph, AUCi,j , can
then be calculated for the training and the test set,
and give a general measure of the classifier’s perfor-
mance.
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Table 4: Significance level of the Kruskal-Wallis
hypothesis test when comparing AUCi,j of v1 with
other feature combinations for the classifier.

Features ω1 vs. ω2 ω1 vs. ω3 ω2 vs. ω3

v2 0.816 0.535 0.551

v3 0.467 0.652 0.233

v4 0.968 0.892 0.078

v5 0.894 0.972 -

v6 0.373 0.052 0.991

v7 0.492 0.848 0.175

v8 0.415 0.351 0.419

v9 0.710 0.583 -

v10 0.749 0.762 0.871

For each classifier, we now have performance mea-
sure distributions for AUC1,2, AUC1,3, AUC2,3 and
AUCtotal. The distributions of the results for the
different classifiers are compared by using a Kruskal-
Wallis nonparametric one-way ANOVA hypothesis
test [19] to see if there are any improvements in dis-
criminative power when using expiration curve infor-
mation.

A better impression of the classifier’s accuracy
when used in a clinical setting is found by choosing
a specific working point on the ROC graph, and
thereby a specific sensitivity and specificity. Again
we look at the three 2-class problems separately.
We demand a sensitivity > 90%, which means that
the AED should for example correctly ask for more
air 90 % of the time when the patient is ventilated
insufficiently. The resulting specificity will then for
the same example give an impression of how often
the feedback system is correctly not asking for more
air.

Results

After calculating the separability of a vast number
of feature combinations using Eq. (8), ten feature
combinations were used in the classifier evaluation.
They are presented in the first column in Table 3.
The best discriminative ability in terms of AUC of
the classifier while using a h1 that gives good gener-
ality is presented in Table 3. The window width h1
used for achieving the results are also listed. Some of
the feature combinations did not meet the demand
of generality for any of the tested window widths,
and the results are therefore not displayed. v3 is
the feature with best discriminative ability for all
categories except for when discriminating between
ω1 and ω2. Here v7 achieves the best results.

We then used the Kruskal-Wallis hypothesis
test to test if there was a significant improvement
in using features describing the expiration curve
of the ventilation. The results are presented in
Table 4, and we observe that there is no significant
increase in discriminative power of the classifier from
representing the expiration curve. The specificity

Table 5: Classifier performance in terms of mean
(standard deviation) specificity when demanding a
mean sensitivity above 90%.

Features ω1 vs. ω2 ω1 vs. ω3 ω2 vs. ω3

v1 0.699 (0.130) 0.938 (0.173) 0.325 (0.270)

v2 0.671 (0.121) 0.936 (0.172) 0.395 (0.273)

v3 0.694 (0.124) 0.967 (0.118) 0.383 (0.229)

v4 0.701 (0.118) 0.909 (0.185) 0.343 (0.246)

v5 0.679 (0.130) 0.946 (0.123) - (-)

v6 0.731 (0.126) 0.973 (0.098) 0.396 (0.270)

v7 0.688 (0.115) 0.976 (0.087) 0.310 (0.217)

v8 0.709 (0.088) 0.945 (0.155) 0.345 (0.201)

v9 0.704 (0.123) 0.924 (0.180) - (-)

v10 0.690 (0.137) 0.930 (0.173) 0.398 (0.274)

of the classifier when demanding a sensitivity > 90
% is presented in Table 5. The same window width
as presented in Table 3 is used for the different
feature vectors. The use of v6 and v8 gives better
specificity than if using v1, which shows a potential
benefit of using expiration curve information. The
third column shows that there is a possibility for the
system to ask for less air when in fact the patient is
ventilated insufficiently.

Discussion

The need for solutions that may help improve
the quality of CPR is evident from the findings
in a number of studies [1, 2, 4, 6, 7, 8]. It has
been suggested to equip AEDs with the ability
to continuously monitor ongoing CPR, and give
corrective feedback to the rescuer when necessary
[20, 13]. Thorax impedance has long been used for
respiration monitoring [10, 11, 21], and can easily
be measured through the defibrillator pads [13]. By
using simultaneous measurements of volume and
impedance, we sought to evaluate the theoretical
performance of a tidal volume feedback system
based on impedance measured by an AED through
defibrillator pads. The feedback system was to
state whether the TV of a ventilation cycle was
too low (class ω1), sufficient (class ω2), or to high
(class ω1) according to resuscitation guidelines [14].
A classifier is designed to simulate the feedback
system, where its ability to discriminate between
the types of ventilations is evaluated and measured
in AUC [16].

The classifier achieved mean (standard deviation)
AUC of 0.877 (0.042) when discriminating between
ω1 and ω2, 0.992 (0.018) when discriminating be-
tween ω1 and ω3, and 0.813 (0.109) when discrim-
inating between ω2 and ω3 for the best feature
combination. The results showed that there was a
small improvement in performance when character-
izing the expiration curve of the ventilation cycle.
The results of the statistical testing presented in ta-
ble 4 does however show that the improvement was



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

not significant.
Despite the promising gain of using expiration

curve characterization, the technique may possibly
not be useable in a CPR setting. The data used
in evaluation of the classifier were collected from
mechanically ventilated and therefore intubated pa-
tients. Because of the intubation and thereby use
of an endotracheal tube, the arial compliance of the
trachea is different than from a setting with out in-
tubation. The effect of the endotracheal tube on the
expiration curve is unknown. Another problem is
that the impedance trace is sensitive to movement. If
administering series of 15 compressions and 2 venti-
lations, medical personnel normally starts compres-
sions immediately after finishing the second inspi-
ration and thereby corrupting the expiration curve.
The theoretical increase in performance when using
expiration curve characterization is small compared
to the increase in implementation complexity if used
in a real world setting.

It is also alarming that the system may ask for
less air when the patient should receive more air.
This may be confusing for the rescuer and dangerous
to the patient, because the feedback system will in
fact work against performing CPR according to the
guidelines.

Conclusions

Although inaccurate, the TI may give some
indication on the amount of air given to the patient,
and hopefully improve the quality of CPR. If the
system is tuned so that it gives corrective feedback
on 90% of insufficient ventilations, 73% of the
ventilations accepted as sufficient will truly be
sufficient. The discrimination between ω2 and ω3

is less convincing, with a specificity of 40 % when
demanding a sensitivity of 90 % on ventilations
classified as sufficient. This type of feedback should
possibly be excluded in a realization of a feedback
system. Because the relationship between TV and
corresponding impedance change is patient depen-
dent, the feedback system may give consistently
correct feedback for one patient but will consistently
erroneous feedback during ventilation of another
patient. Other signals containing information about
the patient’s physiology that the AED can acquire,
should be considered for improving the accuracy
of the classifier. With the present results, it is
not advisable to use impedance measurements
for feedback on tidal volume because of the low
accuracy.
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