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Abstract: In this paper a novel algorithm is presented
for computerized detection of changes in human mo-
tor responses. It is a sequential method based on the
Maximum Likelihood approach. The method extends
traditional approaches by considering changes with fi-
nite slope. This is a achieved by using a ramp-step
model instead of a step model. The algorithm is suc-
cessfully applied to position signals measured during
tapping experiments.

Introduction

Tapping experiments are a common approach to in-
vestigate various effects of the human motor system [1].
In the traditional tapping setup the subject is sitting in
front of a table tapping rhythmically with the index fin-
ger on a switch resulting in a periodic binary signal. In
more sophisticated setups the movement of the index fin-
ger is monitored by an optical position sensor providing
a continuous signal of the finger position. Thus the infor-
mation decoded in the shape of the signal is preserved.

Figure 1 displays a section of the position signal com-
prising two subsequent tapping movements. The first tap
reaches the table (indicated by the steady epoch from
100ms to 300ms). During the second tap the finger
moves up again before the table is reached. Such extra
taps sometimes occur in coordination experiments when
the subject is asked to simultaneously perform concur-
rent motor tasks with both hands. These extra taps pro-
vide valuable information about the coordination strate-
gies used by the human motor system but they would be
masked when using a switch based tapping setup. On
the other hand analysing the continuous signal demands
a more sophisticated signal processing to locate the tap-
ping movements.

Usually change detection methods assume a step-like
change profile [2, 3, 4, 5]. This condition is not fulfilled in
the present context which would result in biased change-
point estimates. The signal is rather a series of changes
with finite slope were the main interest of this paper is
to estimate the starting point of each action. An action
will be defined as a rapid movement of the finger either
in upward (extension) or downward direction (flexion).
An algorithm that regards finite slopes was presented by
L. Charbonnier et al. [6]. They compute the slope in a
heuristic post processing step. In contrast to this in this
paper one action is modelled by a ramp-step function [7]
depicted in Figure 2. It is a piecewise linear function
composed of three straight lines that adjoin.

The ramp-step represents the simplest approximation
to a signal comprising a change with finite slope. It is a
model for a single action either a flexion or an extension
movement.

In order to locate multiple tapping movements a se-
quential algorithm will be employed processing the sig-
nal from the beginning to the end. Furthermore the
method is divided in two stages. The first stage is respon-
sible to detect the next action. This is followed by a stage
where the location of the detected action is estimated.
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Figure 1: A typical tapping signal obtained in a coordina-
tion experiment. Note that the second flexion movement
is interrupted before the finger has reached the table.

Method

A method is presented for detecting change-points in
the time varying meanu[n] of a signaly[n] corrupted by
additive white Gaussian noisee[n]. This means that each
sample ofe[n] is Gaussian distributed with zero mean and
varianceσ2 and is uncorrelated with all the other sam-
ples. The varianceσ2 is supposed to be constant.

y[n] = u[n]+e[n] n = 1,2, . . . ,N (1)

The number of change-points and their position are
unknown. A regression model is considered composed
of K adjacent ramp-step functions.

A single ramp-step function appears in Figure 2. The
function is defined on the interval[a,b]. The change-
point k and the rise-timeτ define the location and speed
of a movement. Moreover the offsetd and the magni-
tudeh are introduced since neither the level before nor
the level after the movement is known a priori.
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Figure 2: The ramp-step function which models a sin-
gle action. The main interest is to estimate the change-
pointk.

The offset and magnitude are real valued where the
change-point and rise-time are integer valued. The
change-point is an element of the interval[a,b−1] where
the rise-time of the interval[1,b− k] so thatk+ τ ≤ b.
Whenτ = 1 the ramp-step is equal to the step model and
for τ = b−k it is equal to a pure ramp model.

The same pattern is used for modelling flexion (h< 0)
and extension movements (h > 0).

The result of the method will be a list of intervals
[a(i),b(i)] on which the ramp-step functions with parame-
tersk(i), τ(i), h(i) andd(i) are defined withi = 1,2, . . . ,K;
with the initial conditiona(1) = 1.

The algorithm starts with the first sample using aLike-
lihood Ratio (LR)test to detect the first action. Then a
local estimate of the ramp-step parameters is done using
theMaximum Likelihood (ML)method. These two steps
are repeated until the end of the signal is reached. The
aims of the two steps are different. Of great importance
is areliable detection that forms the basis of anaccurate
estimation.

In the remainder the different parts of the algorithm
are explained in detail.

Detection of an action

The change detection algorithm used in this paper is
a model based approach. These algorithms continuously
monitors the difference of the change model with the con-
dition of no change while scanning the signal. A change
is detected when the difference is significant.

The detection algorithm used here is an approximated
Generalised Likelihood Ratio (GLR) test [8] that uses
a step model although, as stated above, a ramp-step is
expected. Nevertheless, since the signal to noise ratio
is high one can expect a reliable detection and the step
model allows an efficient implementation.

The algorithm is a window based approach withL be-
ing the width of a sliding window. The ratio of the prob-
ability that a jump has happened at timen−L to the no
jump hypothesis is calculated and a change is detected if
this ratio exceeds a thresholdδ . In [8] the test statisticgn

is derived for the Gaussian case with

gn =
1

2L

(

n

∑
j=n−L

(y[ j]−µ0)

)2

(2)

whereµ0 is the mean before change. Since in the present
context this mean is not known a priori it is replaced by
its maximum likelihood estimate

µ̂0 =
1

n−L−a(i)

n−L−1

∑
j=a(i)

y[ j] . (3)

The time instantn wheregn > δ serves as the upper
bound of the interval[a(i),b(i)] that is used in the follow-
ing estimation step.

Estimation of the ramp-step function

Once a change is detected the ML method is used
to fit a ramp-step to the signal on the interval[a(i),b(i)].
Introduce the vectoryyy = (y[a(i)],y[a(i) + 1], . . . ,y[b(i)])T

and the vectoruuu = (u[a(i)],u[a(i) + 1], . . . ,u[b(i)])T with
u[n] = u(n;k,τ,h,d) being the ramp-step function de-
picted in Figure 2. Moreover the parameters are collected
in the vectorθθθ = (k,τ,h,d)T and the size of the interval
[a(i),b(i)] is denoted byc = b(i)−a(i) +1. Then the loga-
rithm of the likelihood foryyy given θθθ is equal to

ln L(yyy;θθθ )

= ln

{

1
(√

2πσ
)c exp

[

−
1

2σ2

c

∑
j=1

(yyy[ j]− uuu[ j])2

]}

= −c ln
{√

2πσ
}

−
1

2σ2 (yyy− uuu)T(yyy− uuu) .

The estimate of the vector parameterθθθ is the argu-
ment which maximizes the likelihood function.

θ̂θθ = arg max
θθθ

ln L(yyy; θθθ ) (4)

Since the argmaxθθθ -operator is invariant for summands
and positive factors not depending onθθθ Equation 4 can
be written

θ̂θθ = arg max
θθθ

Λ (5)

with

Λ =−(yyy− uuu)T(yyy− uuu) . (6)

The parametersh andd are real valued. Their opti-
mum can be derived by setting the partial derivatives to
zero. For that reason the vectorppp is introduced so that
uuu = h ppp + d holds; consequentlyppp is a unit ramp-step
with magnitude 1 and offset 0.

Now the maximisation of the likelihood is simplified
by substitutingh andd by their estimates. The maximi-
sation can then be expressed in terms ofy∗y∗y∗ and p∗p∗p∗ as
follows

max
θθθ

Λ = max
θθθ 2

(

y∗y∗y∗Tp∗p∗p∗
)2

(7)
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Figure 3: a) The end of the shaded epoch is the time
where the action is detected. b) The complete movement
is covered in the enlarged range[a(i),b(i)]. The ramp-step
function will be estimated correctly.

with

y∗y∗y∗ = yyy− ȳyy (8)

p∗p∗p∗ =
ppp− p̄pp

√

(ppp− p̄pp)T(ppp− p̄pp)
(9)

θθθ 2 = (k,τ)T
. (10)

The substitutiony∗y∗y∗ is the signal vectoryyy minus its
mean andp∗p∗p∗ is a unit ramp-step with mean zero and
norm one. In Appendix A a prove for Equation (7) is
given.

Equation (7) simplifies the problem by reducing the
number of parameters. The remaining parametersk and
τ are integer valued. They are estimated by computing
(

y∗y∗y∗Tp∗p∗p∗
)2

for each pair(k,τ) numerically and the estimate

is the pair(k̂, τ̂) that maximises
(

y∗y∗y∗Tp∗p∗p∗
)2

.

(k̂, τ̂) = max
(k,τ)

(

y∗y∗y∗Tp∗p∗p∗
)2

(11)

If in addition the estimates ofh andd are needed the
equations in Appendix A can be used.

Recursive estimates

There is one aspect that has not been discussed yet.
Since the signal to ratio is high, an action is usually

detected while it is ongoing, which means the interval
[a(i),b(i)] does not cover a whole action. Therefore the
upper bound of the interval[a(i),b(i)] is increased recur-
sively until it covers a whole movement.

The difference∆s= b(i)− (k(i) + τ(i)) serves as a de-
cision criterion for this condition.∆s is the minimal value
of the constant duration at the end of the movement. The
recursion is performed by increasingb(i) and fitting the
ramp-step on[a(i),b(i)] until ∆s is greater than the posi-
tive integer∆smin. This process is illustrated in Figure 3.

In Figure 3a the shaded epoch is the interval where
the extension movement is detected. The window width
L = 40 and the thresholdδ = 0.001 were used. As ex-
pected the action is detected while the movement is ongo-
ing. Now the ramp-step function is estimated recursively
on the growing window where the parameter∆smin = 50
was used. The final interval[a(i),b(i)] is shown in Fig-
ure 3b. Furthermore the estimated ramp-step is depicted.

Initialise the next iteration

Finally the detection of the next change is initialised
by settinga(i+1) = k̂(i)+ τ̂(i). Note that the adjacent ramp-
steps overlap to improve the accuracy of the estimated
meanµ̂0 before change.

The complete algorithm is summarised in pseudo
code in Figure 4.

a← 11

while a < N do2

b← detect action on[a,N]3

∆s← estimate ramp-step on[a,b]4

while ∆s< ∆smin do5

increaseb6

∆s← estimate ramp-step on[a,b]7

end8

updatea9

end10

Figure 4: Sequential change detection with the ramp-
step model

Results

The algorithm has three design parameters. The slid-
ing window width L and the thresholdδ for detection
and for estimation there is just the minimal duration after
change∆smin. In Figure 5 the analysed signal of Figure 2
is depicted. Four actions are found and the correspond-
ing ramp-steps are depicted (flexions with dashed lines
and and extensions with dashed-dot lines). The overlap-
ping of the ramp-steps can be seen especially between the
first extension and the second flexion movement. The de-
sign parametersL = 50, δ = 0.001 and∆smin = 50 are
used. The choice of the latter is done by a brief exam-
ination of the signal. It is set to the minimal expected
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Figure 5: The analysed signal of Figure 1. The four found
epochs are shaded. Furthermore the estimated ramp-step
functions are depicted.

constant epoch between the movements, which is in gen-
eral a good advice.

The signal in Figure 6a serves as a second example.
The extension movement is prolonged by a short pause
resulting in two sub-movements. The first analysis (Fig-
ure 6b is done with a sensitive detection. Two ramp-steps
are fitted, one for each sub-movement. In the case of a
large sliding windowL = 300 the detection occurs during
the second sub-movement. As a consequence one ramp-
step is fitted to the extension movement.

When running the algorithm on larger datasets sub-
movements can easily be found by checking the sign of
the magnitude of subsequent ramp-steps.

Conclusions

Continuous tapping data has special demands on sig-
nal processing. A model based approach is presented for
dividing a dataset in movements. It is shown by example
that the presented algorithm based on a model of adjacent
ramp-step functions is suitable for this task.

In future work the model will be improved so that
it better represents the smooth nature of finger position
data. This involves higher computational effort. That will
follow a comparison of reliability, accuracy and compu-
tational costs of algorithms based on these two models.

A Proof of Equation (7)

In Equation (7) it is stated that the maximum ofΛ can
be expressed in terms ofy∗y∗y∗ and p∗p∗p∗ as follows

max
θθθ

Λ = max
θθθ 2

(

y∗y∗y∗Tp∗p∗p∗
)2

(12)

with uuu = h ppp + d and the parameter vectorsθθθ =
(k,τ,h,d)T andθθθ 2 = (k,τ)T . In the following the proof
is formulated asppp being a unit ramp-step butppp might in
general be an arbitrary vector inRc.
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Figure 6: a) An extension movement comprising two sub-
movements. b) Using the parametersL = 50, δ = 0.001
and ∆smin = 50 the flexion is divided in two ramp-step
functions. c) Using the parametersL = 300, δ = 0.001
and∆smin = 50 the sub movements are hidden because of
the late detection.

It is a constructive proof starting with the definition
of Λ. First the vectoruuu is substituted byh ppp +d.

Λ = −(yyy− uuu)T(yyy− uuu)

= −yyyTyyy +2yyyTuuu− uuuTuuu

= −yyyTyyy +2yyyT(h ppp +d)− (h ppp +d)T(h ppp +d)

= −yyyTyyy +2hyyyTppp +2cdȳyy−h2 pppTppp−2cdhp̄pp−cd2

(13)

In the last termȳyy is a vector of lengthc which has
equal elements. Each element is equal to the mean over
the elements ofyyy. The vectorp̄pp is defined respectively.
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 The maximisation ofΛ in Equation (12) is divided
in first maximising overh andd and secondly over the
other parametersk and τ collected in the vectorθθθ 2 =
(k,τ)T . Sinceh andd are real valued, their optimum can
be computed by setting the partial derivatives to zero.

From Equation (13) the partial derivatives with re-
spect toh and tod are inferred to

∂Λ
∂h

= 2yyyTppp−2h pppTppp−2cdp̄pp (14)

∂Λ
∂d

= 2cȳyy−2chp̄pp−2cd . (15)

The estimates ofh andd are obtained by solving the
following system of linear equations

∂Λ
∂h

= 0

∂Λ
∂d

= 0

and it follows

ĥ =
yyyTppp
pppTppp
−cd̂

p̄pp
pppTppp

(16)

d̂ = ȳyy− ĥ p̄pp . (17)

Note that the estimatêh depends on̂d and vice versa.
This linear equation system can be solved with the final
estimates in Equations (18) and (19).

(17) in(16)−−−−−−→ ĥ =
yyyTppp
pppTppp
−c
(

ȳyy− ĥ p̄pp
) p̄pp

pppTppp

⇔ ĥ pppTppp = yyyTppp−cȳyy p̄pp +cĥp̄pp2

⇔ ĥ =
yyyTppp−cȳyy p̄pp

pppTppp−cp̄pp2 (18)

(18) in(17)−−−−−−→ d̂ = ȳyy−
yyyTppp−cȳyy p̄pp

pppTppp−cp̄pp2 p̄pp

⇔ d̂ =
ȳyy pppTppp−cȳyy p̄pp2− p̄pp yyyTppp +cȳyy p̄pp2

pppTppp−cp̄pp2

⇔ d̂ =
ȳyy pppTppp− p̄pp yyyTppp

pppTppp−cp̄pp2 (19)

Now the parametersh andd can be replaced by their
estimates inuuu = h ppp +d.

uuu = ĥ ppp + d̂

=
yyyTppp−cȳyy p̄pp

pppTppp−cp̄pp2 ppp +
ȳyy pppTppp− p̄pp yyyTppp

pppTppp−cp̄pp2

After factorisation, the terms−cȳyy p̄pp2 + cȳyy p̄pp2 are added
to the numerator. Resorting leads then to the equations

uuu =
yyyTppp (ppp− p̄pp)−cȳyy p̄pp (ppp− p̄pp)+ ȳyy (pppTppp−cȳyy p̄pp2)

pppTppp−cp̄pp2

=
(yyyTppp−cȳyy p̄pp)(ppp− p̄pp)+ ȳyy (pppTppp−cȳyy p̄pp2)

pppTppp−cp̄pp2 .

Finally this equation is split up in the following way.

uuu =
yyyTppp−cȳyy p̄pp
√

pppTppp−cp̄pp2

ppp− p̄pp
√

pppTppp−cp̄pp2
− ȳyy (20)

Comparing this equation with the definition ofy∗y∗y∗ andp∗p∗p∗

in Equations (8) and (9), it turns out, that the first factor
is equal toy∗y∗y∗Tp∗p∗p∗ and the second factor is equal top∗p∗p∗ .
Hence

uuu = p∗p∗p∗ y∗y∗y∗Tp∗p∗p∗ + ȳyy . (21)

The final step of this proof is to replaceuuu in by
p∗p∗p∗ y∗y∗y∗Tp∗p∗p∗ + ȳyy in the definition ofΛ.

Λ = −(yyy− uuu)T(yyy− uuu)

= −
(

yyy−
(

p∗p∗p∗ y∗y∗y∗Tp∗p∗p∗ + ȳyy
))T(yyy−

(

p∗p∗p∗ y∗y∗y∗Tp∗p∗p∗ − ȳyy
))

= −
(

y∗y∗y∗ − p∗p∗p∗ y∗y∗y∗Tp∗p∗p∗
)T(y∗y∗y∗ − p∗p∗p∗ y∗y∗y∗Tp∗p∗p∗

)

= −y∗y∗y∗Ty∗y∗y∗ +2y∗y∗y∗Tp∗p∗p∗ y∗y∗y∗Tp∗p∗p∗ −
(

y∗y∗y∗Ty∗y∗y∗
)2

= −y∗y∗y∗Ty∗y∗y∗ +
(

y∗y∗y∗Tp∗p∗p∗
)2

Since the term−y∗y∗y∗Ty∗y∗y∗ does not depend on any parame-
ter it can be cancelled when the maximisation overΛ is
performed. For this reason Equation (7) is proven to be
correct.
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