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Abstract: The contribution deals with the 
processing of the 2D multi-spectral images, 
especially their fusion, using an orthogonal discrete 
wavelet representation of previously registered 
image pairs. The method is based on decomposition 
of gradient of the vector image by computation of 
eigen-values of the first differential of the vector 
image. An application of the method to multimodal 
ophthalmic images is presented. Two multimodal 
images (color fundus photograph and Heilderberg 
retina tomography image) are preprocessed and 
registered by the originally designed registration 
method based on maximization of the modified 
mutual information as the global similarity criterion. 
Controlled random search is used as the robust 
optimizer. 98% of images in the testing set 
containing 336 images have been successfully 
registered according to the subjective evaluation of 
the human observer. Further, results of the image 
fusion are presented as well as the first evaluation of 
segmentation of the optic nerve head contour. 

 
Introduction 
 

As a result of rapid development of new imaging 
modalities, the demand for simultaneous processing of 
several of these images has been arisen in past few 
decades. Especially the area of medical imaging often 
produces many types of images of the same scene e.g. 
MRI images taken with various parameters (T1, T2, …), 
CT and PET images, images enhanced by contrast 
agents. Another type of multi-spectral images is 
provided by remote-sensing or infrared imaging. 
Nowadays, processing of these multi-spectral images is 
usually done by component-by-component processing, 
but this approach has several disadvantages as if the 
inter-component dependencies are not taken into 
account. For this reason, the fusion can be done to 
obtain scalar image and then usual processing can be 
performed or processing of the image is carried out by 
generalized vector methods. In [1] it is shown that 
principle component analysis (PCA) is a relevant 
method for merging remotely sensed imagery because 
of its ability to reduce the dimensionality of the original 
data from n to 2 or 3 by finding principal component, 
which contain majority of information. In [2] the 
wavelet-transform-based image fusion is presented, 
where to-be-fused images are first decomposed using 
discrete wavelet transform (DWT), then a fusion 

decision map is generated based on a set of fusion rules 
and the fused wavelet coefficient map is constructed 
from the wavelet coefficients of the source images 
according to the fusion decision map. Finally the fused 
image is obtained by performing the inverse wavelet 
transform. The method for merging high-resolution 
panchromatic image (SPOT) and a low-resolution multi-
spectral image (LANDSAT) presented in [3] consists of 
adding the wavelet coefficients of the high-resolution 
image to the multi-spectral image data. The method is 
compared to standard intensity-hue-saturation (IHS) 
method. The algorithm using the orthogonal gradient 
representation of multi-spectral images and its 
applications in image merging and color image 
demosaicing is described in [4]. In this paper, we 
present this slightly modified method for automatic 
fusion of images acquired from two imaging modalities, 
namely of the confocal scanning laser ophtalmoscope 
(CSLO) image and color photographic image of the 
retina, sometimes called fundus photographs (CFP).  

Prior to fusion, both images are registered using the 
originally designed algorithm based on robust 
maximization of the mutual information similarity 
criterion. The fusion is done with expectation of 
benefits to consequential segmentation of the optic disk 
in the fused vector valued image data. This 
segmentation is a necessary pre-step for evaluating 
retinal images and also for better diagnosing of 
glaucoma and cerebro-vascular diseases. Nowadays, 
this segmentation is performed by medical experts but 
there are two serious problems. The first problem is the 
inter- and intra-operator variability reported by many 
studies (e.g. [5]), the second one is unsatisfactory 
sensitivity and specificity of individual diagnostic 
methods [6], [7], and finally the process of diagnosis is 
slow and the costs are high. 

For this reason the automatic segmentation is 
necessary especially for glaucoma screening where 
large amount of people should be examined. 

 
Materials and Methods 

 
The process of diagnosis of multi-spectral retinal 

image data can be split into several stand-alone phases. 
First, both images have to be preprocessed. In the 
second step both images are registered into one vector-
valued image. Thirdly the fusion of the vector valued 
image is performed. Then the optic disc and vessels are 
segmented and the shape parameters of segmented 
structures are computed [8]. Finally images are 
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 classified according to these parameters. Only the first 
four steps are presented in this paper. 

Due to reflectance characteristics of the retina the 
maximum amount of information is contained in the 
green and blue channel. For the purpose of consequent 
registration, the principle component analysis (PCA) [9] 
is done and only the band belonging to the highest 
eigen-value is used for the subsequent processing. Both 
images are corrupted by non-homogenous illumination; 
therefore its correction is necessary [10]. Unfortunately, 
this procedure significantly emphasizes noise; hence 
edge preserving smoothing is done making use of 
anisotropic diffusion [11]. 

Since both images are generally not in the same 
coordinate system, image registration has to be 
performed. The registration is defined as searching for 
the best geometric transform describing the relationship 
between the reference and the registered images. The 
used affine transform T is supposed to depend on a 
vector parameter α, encompassing shift, rotation, scale 
and shear. The vector parameter is found by 
optimization,  

( )( )[ ]αα
α TC MF,max arg0 = , (1)

where F is the reference image, M is the registered 
image, which is spatially transformed by αT  to the 
coordinates of the reference image. The registration 
quality, corresponding to the transform T is evaluated 
by the criterial function C. Tα0 is then the optimal 
transform with respect to the criterion. As was proven in 
[12], affine transform provides sufficient flexibility for 
restoration of misregistration between both images. 
Modified mutual information was used as the similarity 
criterion since it is able to cope with substantially 
differing contrast mechanisms of the corresponding 
features in the images. Mutual information of two 
images is defined as follows: 
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where x is spatial position in reference image coordinate 
system, F is fixed reference  image, M is moving image, 
both images are considered random variables therefore 
pF [F(x)] and  pM [M(T(x))] denotes probability of 
occurrence of brightness value corresponding to current 
position in images F and M and pFM[F(x),M(T(x))] 
denotes mutual probability.  All these probabilities can 
be evaluated from mutual histogram which is 
constructed as follows:  

F  allfor  ,1) ))(M( ),F( () ))(M( ),F( ( ∈+= xxxxx ThTh (2)
where h is usually symmetric 2D matrix of size Nbins 
and the value h(a,b), a∈[0, Nbins-1], b∈[0, Nbins-1] is 
equal to the number of corresponding pairs having 
intensity value in the range ( )[ ]sbFasbFa ⋅+⋅ 1,  in the 
first image and intensity value ( )[ ]sbMbsbMb ⋅+⋅ 1,  in 
the second image, where Nbins is number of bins for 
histogram calculation. Size of intensity bin sbF and sbM 
are defined as follows: 
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Two commonly used algorithms to estimate the joint 
histogram of two images are intensity interpolation and 
partial volume interpolation performed directly in joint 
histogram [13]. However, when the two images have the 
same spatial resolution along at least one direction, both 
algorithms may suffer from interpolation-induced 
artifacts [14]. The reason is that, under this condition, 
the number of grid-aligned pixels may change 
discontinuously when the displacement involved in the 
geometrical transformation along that direction changes. 
To avoid the formation of the artifact patterns we have 
used nearest neighbor interpolation and 25 bins for 
creating mutual histogram. The computation of 
probabilities is then done using new smoothed mutual 
histogram smH acquired by convolving an original 
mutual histogram with a smoothing linear convolution 
filter with kernel k and size 3x3, thus the probabilities 
can be evaluated as: 
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The final metric value can be evaluated as follows: 

( ) ( ) ,MF,,IMMF,,I
nF
nMTT ⋅=   (5)

where nF is total number of pixels in fixed image and 
nM is number of corresponding pixels transformed 
inside moving image, thus the non-overlapping area is 
penalized.  Despite all these modifications the shape of 
the criterion function still can not be approximated by 
quadratic form and consequently a more robust 
optimization algorithm has to be used. In was shown 
that controlled random search is robust enough. The 
registration can be described as follows in the flow 
diagram on the Figure 1. Optimizer selects 
transformation parameters, then every point of the 
moving image is transformed and if it is lying in the 
area of the fixed image, it is involved into similarity 
measure calculation. When fitness value is calculated, 
optimizer derives next transform parameters from this 
value or possibly from values visited so far and the 
whole cycle repeats until the termination condition is 
fulfilled. 
 

 
 
Figure 1: Image registration schema. 
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 After proper registration a new vector-valued image 
is obtained and subsequent processing can be done in 
two ways. Either the vector-valued image can be 
processed directly using vector image processing 
techniques or the fusion of the vector-valued image into 
a scalar-valued image can be performed with benefits of 
following standard scalar image processing. 

Image fusion is defined as creating a single image 
from a set of input images. The fused image should 
have more complete information which is more useful 
for human or machine perception. Image fusion can 
improve reliability (by redundant information) and 
capability (by complementary information) of 
subsequent processing.  
 

 
 

Figure 2: Illustration of image fusion making use of 
wavelet transform 

 
The image fusion can be done making use of 

discrete wavelet decomposition, where images are fused 
by merging their wavelet coefficients. This merging can 
be based on creating sc. fusion decision map [2] or the 
wavelet representation for multi-valued images is made 
by combining detail (edge) information contained in 
vector-image bands into one set of details using 
DiZenzo’s first fundamental form [4]. It means that 
subsequent processing of the scalar image will utilize 
the advantage of processing all the vector image bands 
simultaneously.  This algorithm is exploited and 
described in this paper. For obtaining the image in the 
image domain inverse wavelet transform is applied. 
Following a development, similar to [4], we obtain: 

Let I(x,y) be a vector valued image with 
components In(x,y), n = 1, …, N and let L is a vector 
operator whose components are both linear operators Lx, 
Ly defined as isotropic convolution operators applied in 
direction x or y. Examples of such a operator can be 
gradient operator ( )yx ∂∂∂∂=∇ /,/ , Gaussian 
gradient filter. Two proposal of the vector operator L 
have been done: 

( ) ( )∑=
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However, both procedures do not take the bands 
into account simultaneously, hence there is a problem 
with averaging opposite vectors, which could annihilate 
despite that they should have some information. For that 
reason multi-valued ‘maximal length’ and ‘direction of 
maximal length’ were defined making use of quadratic 

form of the image differential [4]. The differential of dI 
in Euclidean space can be described as: 
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And its squared norm is given by (sums are over all 
components of the vector image):      
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And for the norm of the differential of scalar 
product ( ) ( ) ( )dyLdxLd yx IIxIL +=⋅  can be written: 
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(6) 

 
The matrix G is symmetric and semi positive-

definite hence its eigen-values are real and non-
negative. The quadratic form (6) represents changes in 
vector-valued image. The direction of maximal change 
is defined by the eigenvector θ1

 of the matrix G 
corresponding to the maximal eigen-value λ1

 
representing the maximal squared length of the vector 
L(I) whereas the second eigenvector lies in the 
orthogonal direction of  maximal length and the 
corresponding eigen-value denotes minimal variations 
of the matrix. Consistence of this theory for a scalar 
valued image (N=1) is obvious, the largest eigen-value 
is 21 I∇=λ and the corresponding eigenvector 

I
I

∇
∇

=1θ , we can also see that 11 θλ ⋅=∇I . The 

other eigen-value equals zero, for multi-valued image 
this eigen-value is generally different from zero. These 
eigen-values are indeed well adapted to discriminate 
different geometric cases: 

If λ1 ≅ λ2 ≅ 0, there are very few vector variations 
around the current point x, the region is almost flat and 
doesn't contain any edges or corners. 

If λ1 >> λ2, there are a lot of vector variations. The 
current point may be located on a vector edge. 

If λ1 ≅ λ2 > 0, the current point lies on a saddle 
point of the vector surface, which can possibly be a 
vector corner. 

For the purpose of fusing images it can be defined: 
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For the fusion of the vector-valued image we used 
method based on discrete orthogonal wavelet 
decomposition [4] 

By this transform, an image f(x,y) is decomposed at 
different scales j into a lower resolution image A2

jf (sc. 
approximation) and three detail images D2

j 1 f, D2
j 2 f,  

D2
j 3 f. This is done by uniform down-sampling of 2D 
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 convolution products. At each scale j∈[-1, J], (n,m) ∈Z2 
we can write: 

 

 
 
 
,   (8)

Where φ and ψ are separable low and high bandpass 
filters. This wavelet transform can be computed by 
gradual applying 1D quadrature mirror filters Lo_D 
(lowpass) and Hi_D (highpass) for decomposition and 
symmetric filters Lo_R, Hi_R for reconstruction [4]. Let 
L be a linear convolution vector operator: 
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Vector image I is then decomposed into wavelet 
coefficients according to the schema in the table 1.  
 
Table 1: The whole algorithm for the multi-valued 
image wavelet representation. 
 
for jth scale      
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 Diagonalize matrix G and compute fused details 
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++  using maximal eigenvalue and  
its  eigenvector (7),  

 Carry out correction of the direction using  
averaged details. 
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final details III 3
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end jth scale 
After decomposition, following set of images is 
generated for each scale: 
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Finally, complete wavelet reconstruction 
 
Detail images on each scale level are computed by 
filtering relevant approximations using Hi_D filter, then 
the orthogonalization (6) is done and a new gradient 
representation is obtained using (7),  then final down-
sampling and filtering is performed defining fused detail 
images at current scale level.  The approximation can be 
computed as averages of each band approximations. It 
can be formalized as: 
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There is a problem with diagonalization caused by 
not uniquely specified signs of the eigenvectors. An 
extensive study and solution of this problem is given in 
[4], where the direction of maximal length is compared 
to the average direction, obtained by applying gradient 
operator on all bands separately and if directions of 
these vectors are different, the maximal length direction 
is flipped into average direction.  

Due to problems with annihilation of opposite 
bands while averaging, we have modified this approach. 
We compare the direction of maximal length with the 
direction of the gradient of the principle component 
acquired from the PCA analysis of approximations of 
each band at the current position.  For this case the 
scalar product of these two vectors is evaluated and the 
direction of the eigenvectors is maintained if the product 
is positive, else the eigenvectors with the opposite 
direction are applied in subsequent computations.  

 
Results 
 

The method was tested on images acquired from 
confocal scanning laser ophthalmoscope (CSLO), 
concretely we have been using the Heildeberg Retina 
Tomograph II (HRT). The CSLO provides three 
dimensional data of optic nerve head produced by 
focusing into different focal planes making use of 
confocal principle [16]. The standard color fundus 
camera Kowa was another modality providing color 
photographs of larger area of the retina than CSLO. The 
aim of the project is to segment correctly the optic nerve 
head margin [8] as needed in diagnosing glaucoma 
especially for screening and preventing the inter-
observer variability. We have used the non-rigid affine 
registration for compensation of distortions between 
both images. Modified mutual information (5) was used 
as suitable similarity criterion. The controlled random 
search (CRS) algorithm was selected as the robust 
enough optimizer. The success-rate of the registration 
was evaluated on the set containing 334 images. First, 
10% of these images were taken as training set and the 
parameters of the algorithm were set. Then the 
algorithm was tested on the other 90% of images. In that 
case, the success rate of the registration was only 
approximately 80%. This was caused by the wrong 
choice of the parameter space bounds, which were set 
to ± 3 times dispersion each of six final parameters 
obtained from successfully registered training set. It can 
be said that the training image set was not representative 
enough. When the falsely registered images were 
registered again with wider boundaries and the 
algorithm parameters were set to boundaries obtained 
by this re-registration, the rate of successfully registered 
images increased significantly to 98%. Another study 
concerning this registration algorithm in greater detail is 
[12]. 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )mnyxyxffD

mnyxyxffD

mnyxyxffD

mnyxyxffA

jj

jj

jj

jj

jjj

jjj

jjj

jjj

−−

−−

−−

−−

−−∗=

−−∗=

−−∗=

−−∗=

2,2,

2,2,

2,2,

2,2,

22
3
2

22
2
2

22
1
2

222

ψψ

φψ

ψφ

φφ



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

 
 A B C 

 
 D E F G 

 
Figure 3: A - original HRT image, B – registered CFP image, C – registered CFP image with inserted mosaic of HRT 
image, D – HRT image with superimposed edges from CFP image, E - fused color CFP image (each band is fused with 
HRT image), F - fused image (all three bands of CFP image and HRT image are fused into one scalar image) with 
detected inner and outer optic nerve head contours, G - original HRT image with contours transferred from the fused 
scalar image.  
 

Due to inaccessibility of golden standard we judge 
the registration quality subjectively. For this purpose we 
construct the HRT image with superimposed edges 
provided by the Canny detector from the green-channel 
of the CFP. Then we visually compare the 
correspondence of these CFP edges with the HRT image 
(fig. 3D). Another type of visual inspection uses image 
mosaicing (Fig. 3C). According to these auxiliary 
images we sort images into three groups. In group zero 
there were only precisely registered images with prefect 
coincidence of CFP and HRT edges all over the whole 
image region, in group one there were sufficiently 
registered with mis-registration in some part of the 
images smaller than 5 pixels. This mis-registration 
could be caused by insufficient flexibility of the model 
of geometric distortion or by finding false local extreme 
of the similarity criterion. In the third group, there were 
the mis-registered images with the errors bigger than 5 
pixels.  

Since the global optimization algorithm is not 
deterministic, we have made 5 runs over the whole 
image set to evaluate the stability of the registration. In 
each of these runs, registered images were sorted into 
groups and a mark was given for each registered image 
pair in the following way; for the image from group I 
the mark was zero, images in the group II have mark 
one and other images have mark 2. Then average mark 
was computed for all images. Registration was 
considered successful when the given image was 
successfully registered (average mark less or equal one) 
in all five runs. The results are summarized in the table 

1. For further description of the registration algorithm 
and its testing we refer to [12]. 
 
Table 1: Registration results. 
 

Total number of images 334

Group I (precisly registered) 316

Group II (sligthly mis-registered) 13

Group III (mis-registered) 5

Sufficiently registered ( I+II) 329

Rate of succes [%] 98.50

Average mark 0.13
 
 After the registration, the image fusion has been 
made according to the previous chapter. The uncertainty 
of determination of direction of the maximal amplitude 
of the change in vector-image was found as the biggest 
problem of the algorithm. On the fig. 3E, we can see 
color CFP image with fused details taken from HRT 
image. For this purpose each band of the color CFP has 
been fused with HRT image. Our medical colleagues 
have assessed this color image and considered it very 
valuable on the other hand it was said that the 
applicability of this image for the purpose of direct 
manual segmentation is not as good as the registered 
CFP-HRT image pair. On the fig. 3F, a scalar image 
created by fusion of all bands can be seen. The biggest 
problem of the fusion is that the structure to be detected 
in the HRT image (optic disc contour) is not exactly the 
same as in the CFP image (here the outer part of the disc 
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 is much better visible). Therefore, useful but weak 
information about the correct contour in the HRT image 
seams to be obscured by the stronger information from 
the CFP image. However, the automatic method we use 
for segmenting the optic disc can deal with this fact as it 
can be seen from the fig. 3F,G. On the other hand, the 
image fusion provides benefits in some cases, like 
missing outer ONH contour in HRT and attending outer 
contour in CFP. For the purpose of segmentation we 
modified Chrastek’s method [8] for the case of fused 
image. Further experiments are needed to be able to 
confirm applicability of the algorithm, because the 
fusion has been tested on a small number of images so 
far, thus this is open for further research. 

 
Conclusions 
 
We have successfully proposed a new method for 

registration, fusion and segmentation of ophthalmic 
images. The method consists of preprocessing step 
where principle component analysis is done, noise is 
suppressed by anisotropic diffusion and non-
homogenous illumination of both images is corrected. 
Then we designed a novel registration method making 
use of robust optimization (controlled random search) of 
modified mutual information similarity criterion. 
Quality of the registration step has been evaluated by 
human observer and reaches 98% of successfully 
registered images.  Further we applied a Scheunder’s  
[4] method for fusion of registered images based on 
wavelet transform and computation of gradient of vector 
image. Finally, successful results of segmentation of 
optic disc contour, done so far on only several images of 
the test image set, have been presented. 
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