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Abstract: Magnetic Resonance Spectroscopy is a 
useful method for metabolism studies in vivo, in a 
non-invasive and non-ionizing manner. However, 
absolute quantitation is still not fully applicable. In 
the present paper we propose a method, based on 
simulation results, for evaluating the reproducibility 
of Magnetic Resonance Spectroscopy data 
quantitation, as function of the signal-to-noise-ratio 
and the number of signals acquisition. 
 
Introduction 
 

Magnetic Resonance is widely used as a non inva-
sive means of obtaining clinically useful information; in 
particular, Magnetic Resonance Spectroscopy (MRS) 
offers a multi-metabolic approach for biochemical 
studies in vivo.  

The application of a static field B0 induces electronic 
currents in atoms and molecules, and these produce a 
further small field at the nucleus which is proportional 
to B0. Therefore, the total effective field, Beff, at the 
nucleus becomes[1]: 

)1(BB 0eff δ−=  (1) 

where δ is the contribute of the small secondary field 
generated by the electrons. Then, the resonance 
frequency ν0 becomes: 
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where γ is the gyromagnetic ratio. The δ value is 
dependent upon the electronic environment of the 
nucleus, and therefore nuclei in different chemical 
environments give rise to signals at different 
frequencies. So that: MRS signals are generated by 
applying a radio-frequency pulse to the sample; the 
signal from the sample is measured and Fourier 
transformed, in order to visualize and, possibly, to 
analyse the spectral shifts due to the chemical 
composition of the sample. 

An accurate and efficient quantitation of MRS 
signals is the essential step prior to the conversion of the 
estimated signal parameters into biochemical quantities, 
although much effort is still needed to establish rigorous 

means for accurate analysis. In fact, MRS signals are 
characterized by low Signal-to-Noise-Ratio (SNR) and 
simple signal processing techniques are in general not 
adequate, [2]. Moreover, in proton MR spectroscopy  
(1H-MRS) large solvent water resonance may cause 
problems on accurate quantitative analysis when not 
properly suppressed [3].  

Furthermore, accurate quantitation is complicated by 
the presence of noise-induced errors. In literature, great 
effort has been directed towards minimizing noise levels 
in order to optimise the signal but in some instances, 
and particularly in vivo, where a lot of data should be 
acquired in a short time, the noise levels are higher than 
acceptable, leading to a reduced signal-to-noise ratio 
(SNR) and, consequently, to an increasing error on 
metabolites concentration estimation. One solution is to 
repeat signal acquisition and to perform signal averages 
in order to obtain less noisy signals; however, such 
solution is time consuming and not practicable when 
dynamic information is necessary: this is the case of 
functional spectroscopy or spectroscopic imaging, 
where a lot of spectra, covering a huge anatomic area, 
must be acquired. So that, fixing a high number of 
signal averages (NSA) is not always a good solution. It 
is therefore critical to know the limitations of such 
measurements and to determine how quantitation 
depends on SNR. 

In this paper we present a method, based on 
simulation results, for evaluating the reproducibility of 
MRS data quantitation, as function of NSA and of SNR. 
 
Methods 
 

The proposed method is obtained through the 
following simulation and analysis steps. 

MRS signals modeling: the function used to model 
the N points MRS signal is the sum of exponentially 
dumped complex sinusoids, as follows: 
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where K is the model order, j=√-1, ak is the amplitude, 
φk is the phase angle, dk is the dumping factor, fk is the 
frequency of the k-th sinusoid (for k=1, ..., K), ∆t is the 
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 MRS signal sampling interval and ε(n) is the complex 
white Gaussian noise; the ‘ ^ ’ symbol on x indicates 
that this quantity represents the model function rather 
than the actual measurements. 

MRS simulation: we simulated MRS signals 
according to Montecarlo method by using simulation 
parameters values similar to experimental 1H-MRS 
signals. In particular: MRS signal data set is the sum of 
three components: residual water, five metabolites, and 
noise; according to the previous formula, residual water 
and metabolites peaks are simulated as exponentially 
dumped sinusoids. The central frequencies of the 
metabolites spectral peaks range from 60Hz to 210Hz; 
in particular: f1,...f6= [60, 90, 120, 150, 180, 210] Hz. 
The peaks amplitudes ak, k=1,...,6, values are: [1, 1.1, 
1.2, 1.3, 1.4, 1.5] (in arbitrary units) respectively. The 
dumping value dk, k=1,..,6 is simulated with value 7 for 
all the peaks. The amplitude ratios between residual 
water and metabolites peaks are between 10 and 100, as 
it happens on experimental spectra, acquired using some 
water suppression technique. Water resonances have 
been simulated as a sum of seven peaks, according to 
[4], with peaks amplitudes aw (w=1,...7), from 15 to 
1150 (in arbitrary units), central frequencies fw from –
8.40 Hz to 6.31 Hz, dumping factors dw from 4.25 to 
12.45.  

Montecarlo simulation included the realization of a 
total of 5600 signals, grouped by series of 200 averaged 
MRS spectra; each series includes different NSA values 
and different Gaussian noise variance σ2. 

 

 
Figure: 1 Examples of simulated MRS spectra  
 
Some examples of simulated MRS spectra are 

shown in figure 1. In particular, left spectra are relevant 
to signals generated for σ2 = -5dB, while curves on the 
right are obtained for σ2 = -20dB. Spectra on the higher 
part of the figure are relevant to NSA=8, that is a typical 
value in in-vivo experiments, and curves on the bottom 
are obtained for NSA = 32. From figure it is evident the 
presence of the residual water, with an amplitude 
sensibly higher than the peaks relevant to the simulated 
metabolites. On the spectra on the left of the figure 1, 
the presence of noise is also evident. 

Model parameters estimation: such operation has 
been performed by using Maximum Likelihood 

estimates of the model parameters, by minimizing a so-
called variable projection functional [2] after splitting 
the model function into a linear and nonlinear part. In 
more detail, in order to derive such functional, the 
model function (3) is modified as  

( )∑
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where ck are the complex amplitudes i.e. akejfk, νk = 
[fk, dk,∆t] and ηk(νk,n)= exp(-dk+jπfk)n∆t. Using matrix 
notation, (4) becomes: 

Νcx =ˆ  (5) 

So that, Maximum Likelihood estimation problem 
becomes to minimize the following cost function: 

22ˆ xΝΝxxx +−⇒−  (6) 

([2]), where Ν+ is the pseudo-inverse of Ν , i.e. Ν+ = 
(ΝHΝ)-1ΝH and ‘H’ symbol is for denoting complex 
conjugate. 

Then, the solution of (6) is found as a nonlinear 
least-squares problem, by searching for a local 
minimum.  

Water suppression is obtained by discharging the 
estimated water coefficients on simulated MRS signals. 
In the simulation, SNR values are evaluated considering 
as signal the spectral peaks of the MRS, and as noise the 
variance of the Gaussian noise σ2 that we used as input 
in the simulation.  

Relative root mean squared error evaluation: the 
reproducibility of the quantitation is evaluated as the 
relative root mean squared error (RRMSE) in percent, 
between reference coefficients and estimated ones: the 
generic parameter pk (i.e. ak, fk, φk,or dk) relevant to the 
peak k is evaluated as 
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where S is the number of simulation runs and s
kp̂  is the 

estimate of pk obtained in simulation run s.  
Estimation accuracy evaluation by comparison with 

Cramer-Rao relative lower bound: in order to evaluate 
the estimate goodness, the RRMSEs are compared with 
the relative Cramer-Rao lower bounds (CRlb). CRlb is 
an index giving the best possible accuracy of an 
estimate for any unbiased estimator. The algorithm we 
implemented is described in [5]. 
 
Results 
 

The figure 2 shows simulation results obtained for 
evaluating the RRMSE, as function of SNR and NSA. 
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 Data are relevant to the spectral peak amplitude of the 
peak at frequency 60 Hz (i.e. the parameter a1 in (3)). 
The CRlb is also shown, in order to evaluate the 
accuracy of the estimation algorithm implemented.  

 
Figure 2: peak-1 amplitude RRMSE (in percent) values 
as function of NSA and SNR. The relevant CRlb is also 
shown. 

 
Figure 3: peak-6 amplitude RRMSE (in percent) values 
as function of NSA and SNR. The black curve is the 
relevant CRlb. 

In figure 3 results relevant to peak-6 amplitude (i.e. 
parameter a6 of (3)) estimation, together with the 
relevant CRlb, are shown.  

From figures 2 and 3, it can be seen that the 
RRMSE values arise when NSA decreases or/and SNR 
decreases. The highest RRMSE value is present for 
minimum NSA and SNR. Such trend is maintained for 
all the estimated peaks parameters. We have also to note 
that RRMSE values from figure 2 are higher than the 
ones in figure 3: it seems that estimate of peak-1 
amplitude (a1 of formula (3)) parameter is less 
reproducible than a6. 

As far as the goodness of the implemented 
estimation algorithm, figures 2 and 3 show that the 
algorithm efficiency is enough sensitive to the SNR 
values; in fact, for lower SNR values, RRMSE values 
sensitively deviate from the relevant CRlb ones. The 
algorithm efficiency is almost insensitive to NSA 
changes. We also note that, extending the analysis to all 
metabolites parameters, differences between RRMSE 
values and CRlb are always less than 10%. 

 
Figure 4: RRMSE relevant to peak-1 amplitude, as 
function of noise variance, in dB. 

Figure 4 shows the RRMSE-peak1 amplitude as 
function of the Gaussian noise variance, σ2, as used in 
the simulation, for different NSA values. As expected, 
RRMSE values arise with an exponential trend as σ2 
increases; moreover, for low NSA values, RRMSE 
increases, while it decreases for high NSA. Exponential 
trend shown in figure 4 is very similar for all simulated 
metabolites peaks.  

Table 1:RRMSE (in %) values obtained by estimating 
peak-1 parameters 

 NSA=8 NSA= 32 

σ2 -5 dB -20 dB -5 dB -20 dB 

a1 1.56 0.27 0.78 0.13 

f1 0.41 0.19 0.27 0.02 

d1 23.04 9.90 14.02 6.75 

Table 1 shows the RRMSE (in %) values relevant 
to peak-1 parameters. In particular, the estimated 
parameters are the peak amplitude, a1, the frequency, f1 
and the dumping factor d1. Variations of RRMSE are 
shown for two σ2 values, that are typical in experimental 
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 acquisitions: σ2  = -5dB and –20 dB, and for two NSA 
values.  

Table 2: RRMSE values obtained by estimating peak-1 
parameters 

 NSA=8 NSA= 32 

σ2 -5 dB -20 dB -5 dB -20 dB 

a1 1.03 0.18 0.53 0.079 

f1 0.05 0.017 0.05 0.008 

d1 12.72 3.94 8.15 1.36 

Table 2 shows the same data as table 1, but they are 
relevant to peak-6.  

Tables 1 and 2, show that for all estimated 
parameters, relevant to both metabolites 1 and 6, by 
increasing NSA, the estimation error (i.e. RRMSE 
value) decreases; by maintaining NSA value constant, 
for higher σ2 values, RRMSE increases. Moreover, 
reproducibility of metabolites center frequencies fk is 
the highest, while the dumping factor dk is the worst, 
both for peak 1 (from table 1) and 6 (from table 2). All 
peak parameters estimation is better for metabolite peak 
6 than for peak 1.  

 
Conclusions 
 
Simulation results suggest that the proposed MRS 

data quantitation algorithm allows a good 
reproducibility; we have demonstrated that, for 
acquisition parameters values typically used in 
experimental MRS exams, the estimation error remains 
quite low. The presence of residual water in the MRS 
signal is a problem that we partially solved by 
estimating its parameters and discarding them; however, 
from tables 1 and 2 we have seen that the error values 
obtained in estimating the first peak parameters is 
slightly higher than for the 6th peak ones, perhaps it is 
due to the presence of water components near the peak 
1, as shown in figure 1. 

Moreover, the proposed method allows determining 
the best NSA for a particular SNR and a prefixed 

relative RMS error, [6,7]. In fact, simulation results 
should be applied in experimental MRS as follows: 1) 
the SNR is estimated during acquisition phase as ratio 
between power spectral peaks and baseline variance in 
the time domain; 2) using simulated data, the best NSA 
is determined for a prefixed SNR. 
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