
The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 CABLELESS COMMUNICATION BETWEEN MOBILE PHONE,
DATABASE AND A SCALE USING THE MSD FORMAT

*J. Orlowski, *K. Biskup, *B. Jettkant, **P. Dültgen, and *B.Clasbrummel

*Research Group Telemedicine, BG-Hospital Bergmannsheil Bochum, Germany

**Chair of production systems, Ruhr-Universiy Bochum, Germany

joerg.orlowski@rub.de
karsten.biskup@rub.de

Introduction

In the health care sector decision makers and health
professionals are increasingly concerned with utility,
quality and costs of medical-therapeutic procedures.
Telemedicine makes use of tele-communication and
information technology during the diagnosis and
treatment of patients at home. The birth of telemedicine
is accompanied with space travel [1].
Medical technology applications and equipment are
characterized by an increasing functional integrity. The
individual systems are mostly incompatible and
implemented with manufacturer-specific, non-
standardized technical solution. This leads to
inflexibility and prevents patient-scaled and individual
customization of the devices
The wireless, safe transfer of medical data is becoming
ever more important under today’s conditions.
However, proprietary protocols and isolated solutions
from several suppliers make it impossible to receive and
correctly interpret data by any medical device. For this
purpose, the MSD format was developed, which puts all
required information in a uniform format.
To demonstrate the technical feasibility, a P900 from
Sony Ericsson was programmed such that data from a
scale sent to a Symbian mobile phone via bluetooth
converted to the MSD format and transmitted into a
database. XML documents from the server are
transmitted to the phone hand, parsed and displayed.

Materials and Methods

Figure 1: the setup: scale, mobile phone, Linux server

First we list all individual components of our mobile
home care setup with their specifications. As a simple

corresponding example scale values are wireless
transmitted and transformed into a MSD format on a
mobile phone and then stored in an external server
database.

Scales with RS-232 interface

We have looked for low cost (less than 200 US$) scales
with a measurement range up to 120 kg and a RS-232
interface.on the international market.
The platform scale DE-150K-50N from KERN &
SOHN GMBH is designed as a multifunction balance,
intended to be used manually, i.e. the material to be
weighed is carefully placed in the center of the plate.
The weighing value can be read off after a stable
weighing value has been obtained. With a weighing
range of 150 kg, a reproducibility of 50 g, a linearity of
150 g, and plate dimensions of 315 x 307 x 73 mm it
can be used for non dynamic weighing of persons
individual mass. A warm-up time of 5 minutes stabilizes
the measured values after switching on. The accuracy of
the balance depends on the local acceleration of the fall.
The metrology features must be checked at regular
intervals. For battery operation the balance has an
automatic power off function which can be activated
and deactivated.
A data output is realised via an interface RS-232-C (9
PIN D-Sub). As a condition for the data transfer
between the balance and a peripheral device both
devices have to be set to the same interface parameters
(for instance 8-bit ASCII Code, 1 start bit, 8 data bits, 1
stop bit, no parity bit, 9600 baud). The balance must be
disconnected from the mains before connecting or
disconnecting additional equipment to or from the data
interface. This scale can be set to four different modes:
Pr PC: a reading will be transmitted, only if the PRINT
key is pressed and the weight is stable.
AU Pr: if a stable reading comes up, the reading will be
sent once automatically.
AU PC: weight readings will be sent automatically and
continuously, no matter the weight reading is stable or
unstable.
rE Cr: Remote commands s/w/t will be sent from the
remote to the balance as code. When the balance
received the s/w/t command, following data will
transmitted.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 Another low cost but durable scale is one of the HD
Series from Fa. Myweight with 30 year warranty. These
scales are designed for shipping, weight checking, and
all light industrial uses. The HD-300 comes with an AC
Adaptor and RS-232-cable but it can also be powered
by AA batteries for portable weighing. The HD-300 can
be used standalone or read out by a PC. This scale can
be set to a UPS® and USPS DAZZLE® compatibel
mode. The HD-300 has a built in RS232 port with
single direction interface protocol (9600 baud, 1 start
bit, 8 data bits, 1 stop bit, no Parity).
If the mode “SCI.0” is selected and button “DATA” is
pressed or the carriage return (0d hex) is received then
the scale transmits 14 bytes ASCII data each time:
weight, unit, stability, over/down or low voltage
message according to the following protocol: The string
begins with the start Byte1 “:” and terminates with
Byte 14 a carriage return (0d hex).
Byte 2: “W” for weight, “M” for Message OVER
Byte 3: signature
Byte 4 – 9: weight value in fixed decimal format
Byte 11,12: weight unit, lb or kg
Byte 12 : “S” if stable or “ “ if unstable
Byte 13 “L” means the low voltage

Bluetooth Cable Replacement

The popular RS-232 standard interface is used in many
medical and industrial controls and devices. But cables
are limiting the users freedom and the installation at
home is time expensive.
Bluetooth adapters are active devices with integrated
microcontrollers for RS-232 are nearly perfect wireless
solutions for RS-232 communication cable replacement.
Due to the low radiation and high security in data
transfer, Bluetooth is useful for medical applications,
measurement devices or embedded systems as well.
Such BlueSerial adapters as from Fa. Hantz und Partner
GmbH, Gundelfingen, are working independent of
Operating System allowing a RS-232 cable replacement
up to 100 m depending on the Bluetooth radio Class (1
or 2) and the antennas used.
The max. range is obtained in an open field and the
penetration of walls depend on the thickness and the
material of which they are made. But typical 40 m can
be reached in house.
An automatic detection of RX/TX and DTE/DCE is
integrated. Hardwarehandshake could be switched off
for "dumb" devices like sensors. This adapters offer an
one-time-setup and pairing between two or more
Bluetooth enabled devices. There is an automatic device
recognition and profile detection as well. New adapters
can be wireless configured using a second Bluetooth
adapter on a PC or notebook. There is no need to
program own Bluetooth profiles or stacks. This features
allow an easy integration of new RS-232 BT modules
into own systems and devices to get fast and reliable
connections.
Fa. Stollmann Entwicklungs- und Vertriebs-GmbH,
Hamburg has developed serial BlueRS+ Bluetooth
adapters as stand-alone modules for medical data
acquisition with baud rates from 300 bps up to 230 kbps

and four simultaneous connections. They have been
certified as Bluetooth products.
The adapters have a Bluetooth software integrated and
can be configured via the serial interface or via the
Bluetooth connection. Using well known AT commands
more than one Bluetooth connection can be polled
sequentially from a terminal device.
The functions of these adapters can be set into an
automatic mode or into a multipoint serial bus
emulation. To establish connections from a single
adapter to several terminals Stollmann is offering the
standardized TS 101 369 (GSM 07.10) protocol.
The power consumption depends on the operating
status. Full power of up to 70 mA current is relatively
short required only during transmission phases. In
between they go automatically (<15 ms) into a latency
phase and consumes at minimum 4 mA in the power
down modus. The module can be reactivated via the
serial interface or via Bluetooth.
So far some medical application have been developed
with the Stollmann Bluetooth interfaces, e.g. an online
ECG.
For a high optimized integration into established
standard devices external and internal serial Bluetooth
modules and chipsets are available.
Single-chip solutions or additional integration in
customer solution can be made based on their own
portable Bluetooth upper layer stack. Windows device
drivers and software for serial communications up to
seven concurrent BT connections are available.

MSD Format

In 2001 the initiative “Implantable and Extracorporal
Modular Microsystem Platform (IMEX)” inside VDE
was started to analyze widely used interfaces between
components of modular constructed medical micro
systems [2]. Based on this evaluation the need for a new
data format to be used among micro systems and
external evaluation and storage devices was identified.
A scalable data exchange format was designed for data
transmission between components of medical micro
systems and their communication partners. These
partners can be other micro systems, communication
gateways or computers. Its flexibility allows using
established communication hardware, protocols and
objects. The communication hardware is thereby not
taken into consideration. This specification of the MSD-
format (micro system data format) has been developed
and published in the framework of the International
Electrotechnical Commission's (IEC) Industry Technical
Agreement (ITA) program [3]. The new data format
should meet requirements from the new nature of
information delivered by micro systems.
The MSD format is scalable, thus supporting a wide
range of granularity from one single measuring value to
large aggregates of data. Existing data formats can be
transparently embedded into MSD files and messages.
MSD-structured data can be transparently transmitted
using any existing communication system [4].
Additional information indicating the origin of data,
compression, encryption, transformation method, time

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 base and other information can be added in a header.
The dynamically structured MSD format can be coded
both binary and XML-consistent [6,7,8]. We attach
great importance to data integrity.
The container is the top-level structure generally related
to the handling of data exchange between the
transmitter, the gateway and/or the receiver, which
indicates information about sender, address etc. in a
network. The sections are embedded in the container in
a certain order. They represent a sorted collection of
data. The data itself are embedded into blocks. A
section may contain blocks which are produced by
different individual parts of a systems. The block
contains the raw data and a supplementing description
(heading) as well as provisions for data integrity. The
block ensures the safe transport using information about
the data structure, sequence processing priority and life
cycle.

All three parts can be organized, once again into
similar modules. Message, Container and Block follow
the basic construction: Header block (static and
dynamic), Data object and Data integrity.

Figure 2: global MSD format structure

The notation of the format can be chosen. The notation
ranges from binary / hexadecimal order to a XML
compliant order. In case of using a binary order the
Header of the Block begins with 3 information bytes.
The first one (Data Structure) contains information, as
whether it is a Container, Section, or Block, byte order,
indication of handshaking etc. Every byte ends with one
extension bit. The second byte contains among other
things the priority. This is important, when several
different data streams are sent simultaneously. A
LifeTime ensures that the receiving end confirms the
receipt within the LifeTime, otherwise the packet can
not be considered as have been received. With this, real
time application can be established. A set TimeDivisor
defines the underlying time unit as part of a second.
Finally sender’s name can be set as a string. Clarity can
be guaranteed using serial numbers or MAC addresses.
Actual details such as date stamps are attached to the
dynamic part of the header protocol. The third byte
contains further information whether specific details are
available in the dynamic part, for instance whether data
was compressed or a checksum had been attached. The
dynamic header varies in the length, depending on the
status bits set in the static header. It always begins with
the version number and the type of encoding.
A continuous numerical 32-bit signed integer
BlockCounterNumber identifies the unique sequence of
the Blocks. Since synchronization of all communicating

partners is not feasible, the sequence of individual
Sections cannot be determined, using UTC time stamp.
The BlockType indicates the type of the data object
using four consecutive letters. A common file extension,
generally identical with Windows/ DOS file extensions
permits automated processing. The next bytes are about
priority and LifeTime, access right ad-ministration, all
based on UNIX. Almost important is the length of the
data object for validation of the complete transmission.
The value refers exclusively to the decoded user data in
the data block (BlockDataObject).
Subsequently, the actual data object follows. This is
later stored in the database as referenced file. The
checksum upon the data object is calculated and stored
as an array of char. The width of the array is determined
by the applied CRC method (CRC8-CRC128).
It is possible to store a crypto-signature in the Header of
Container, Section and Block. The encryption can be
added by means of the cipher-status information. Only
the file contents are encoded. Symmetric, public key
and hybrid algorithms are supported.
A new and important supplement to the
Container/Section/Block is the specification of the
address. The address of a sender, receiver, router and so
on is defined as a character string without \0-
termination. Beside all alphanumeric 7 Bit ASCII
characters all 32-bit Unicode characters are allowed,
however exclusively in hexadecimal representation.
Other special characters are used for operators. Lists of
comma-separated addresses in brackets () can also be
created. It is possible to give the address in different
formats, i.e. in decimal, binary or hexadecimal form, as
IP format or as a substring. In doing so, the respective
format must be clearly identified using a prefix. As to
be shown, operators are used for routing [< > / \], for
delimiting of addresses or lists [, | ()] or for priority
definition [:]. In all these cases, the operator
associativity is from right to left. The path is the
description of the route. The layout of this "way
description" is as follows: Addresses(s) Operator(to
from) Address : Priority (LISP like).

Since the deployed medical devices can also act as
actuator applications, Block Execute defines the
executable commands for vendor-specific control data
or instruction tables. Remote maintenance-related
problem definitions can be declared using the Remote
Section. By means of the Block Remote Information-
Header, the device is able to detect whether the
transmitted data is a command for remote maintenance
or not.
As a result a unified format is recommended: scalability
from 8 bit to 64 bit processors, amount of data from
some characters up to several 100 MB data, embedding
of existing data formats (like JPG, DCM…),
identification of communication partners [9,10],
timestamp and date in UTC, chronological order of
messages, prioritization of messages, integrity of
messages, differentiation between data, commands,
execution and remote access, encryption and dig.
Signature, path of transmission, sender name, address,
router, priority, timeout values for transmission and
execution (real time), event markers, handshake support

Container

Section Section

Block Block Block Block Block Block

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 for transmission, support for actuators, sensors and data
transmission.

Symbian Handy

Mobile phone will be able to transform XML data (e.g.
MSD format) if additional software enhances the
functionality of them written in an advanced language.
We decided to use the JAVA version „J2ME“ from
SUN because the P900 can execute JAVA based
programs. This version is adapted to the capabilities of
mobile phones. SUN distribute a free development
package with emulator, which significantly cuts
development costs [11,12,13].
By using this development environment, it was possible
to implement the functions for interpretation of the
MSD format in XML and access the database.
To enable Java on mobile devices the developers must
restrict many possibilities. For both, personal JAVA and
J2ME simplified safety restriction are applied. Those
security functions in personal JAVA are more restrictive
as those for J2ME. Furthermore there is no guaranty
running the same personal JAVA applications on
different cell phones. Portability by using personal
JAVA is not naturally given as field-tests show. We
chose the JAVA Version J2ME from SUN, to have the
possibility to run those JAVA programs on different
mobile phones. The use of such SDKs instead of plain
C++ increase the development effort extensive [14].
There exist a lot of tools to handle XML with J2M. In
general a compromise has to be found between size and
functionalities. For processing XML on embedded
devices licensed parsers like NanoXML, TinyXML or
kXML2 distributed under common public license, may
be used to get the structured content. The first two reads
the complete XML document into local memory and
therefore high memory requirements are needed. The
pull-parser kXML2 is best. The parsing results are
extracted on fly from the input stream from server by
the controlling application. Especially this enables
recursive methods acting on the document’s tree
structure for parsing.

Server, Database

In the background we build up a native command line
Linux server, connected to the Internet. As database we
chose the free available and extreme stable running
PostgrSQL All server applications for handling the data
streams to and from the mobile phone are build with
SUN’s Java developer edition [9].

Results

First let’s have a formal look on scale’s output data
imbedded in the MSD Format as a block.

<MSD_Block>
 <MSD_BlcHeader
 ByteOrder = ‘Intel’
 Handshake = ‘no’
 Version = '1.0.0’
 DataCoding = '2’

 Number = ’1’
 Type = '.txt’
 TimeStamp = ’2005-09-16 07:59:59’
 TimePart = ’0’
 Path = ‘h008822FF0002>h008822FF0001’
 Length = ’9’
 Name = ’KERN DE-150K-50N MyMass’>
 </MSD_BlcHeader>
 <MSD_BlcData
 Data='89.67 kg'>
 </MSD_BlcData>
<\MSD_Block>

Figure 4: MSD format for scale in XML notation

Every Bluetooth device has its own unique
identification, the Bluetooth device address. This is
mostly represented as a 12 digit hex number e.g. 00-88-
22-FF-00-02 which is converted to a more short
machine readable MSD address string h008822FF0002.
The Bluetooth module at the serial port of the scale with
address 00-88-22-FF-00-02 transmits data to the
Bluetooth chip set configured to the address 0-88-22-
FF-00-02. The time stamp is represented in ISO Format,
accepted by many databases and operating systems.
Scale’s US-ASCII text value (DataCoding='2’) is 9
Bytes long, including the sign. No CRC16 checksum
was generated.

Figure 3: from server incoming XML parsed content

Current mobile phones are capable of processing data at
acceptable speed and due to their JAVA, C++ and
Bluetooth capabilities they can communicate with
different devices. Another advantage is the free
programmability, which allows to turn a phone into a
device for medical home use. To demonstrate the
technological feasibility, a Sony Ericsson P900 mobile
phone has been programmed to receive and display
formatted XML data from a relational database.
Files can be exchanged with a server via HTTP by
J2ME applications but never directly by email, because
this is part of the restrictions of the JAVA sandbox
model. There are no restrictions in programming
directly under C++.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 Currently, the P900 includes Bluetooth and Advanced
Messaging APIs for J2ME and Symbian C++ [15].
All incoming structured XML information from the
server (e.g. health care information) can be parsed on
the phone in JAVA. The Scale values can be transported
via Bluetooth to the mobile devices, programmed in
C++ and via GSM to a server.
Access to the Bluetooth serial port emulation protocol
RFCOMM is provided by the Symbian OS socket
architecture [16,17]. RFCOMM, emulates the RS-232
serial port, data is sent in stream and it is quite useful
for easy communication between devices. This part
explains where to find and how to write a simple cel-
phone Symbian C++ program using Bluetooth
RFCOMM for a point to point connection.
First you need to do a discovery using the
OnFindDevices method well known as part of the
menu selection. Functions of the TBTSockAddr class
allow a client application to get and set the socket
address using the 48-bit Bluetooth address structure
Second you do a service discovery with the search
pattern ID 0x1101 for the serial port service. The
Bluetooth device discovery process has first to identify
the address of the device offering the RFCOMM service
and the channel on the receiving device. The client
application then composes the address of the device it
wishes to connect to.
Third start the Bluetooth socket connection, open the
socket and set the port and device address to those
found previously. In the point-to-point access the
CMessageClient class connects and opens a socket
on the RFCOMM. Once a connection has been
accepted, CMessageServer must ensure that the
RFCOMM entry in the SDP database is marked as
being used to avoid a second client connecting to the
same port. It is simply an updating of an attribute value
in the service record.
Forth if always connected, we are now able to receive or
send data. Once a connection with a client device (here
the scale) has been established, the receiving phone
needs only to call the RecvOneOrMore function on the
socket the client has connected to. This will call
CMessageServer::RunL function when data has
been received. Sending data (e.g a carriage return to the
scale) over an RFCOMM connection is as simple as
writing. The CMessageClient::SendMessageL
function performs this task.
Fifth to gracefully disconnect from the device calling
the Disconnect method of the socket object.
To reduce the energy, shutting down of the Bluetooth
socket is done by calling close on the RSocket object.
Before doing this, all RFCOMM services have to be
removed from the SDP database.
Bluetooth connection can be made using API’s from the
JAVA specification request (JSR) 82. It’s a challenge
using this JSR due to their up-to-dateness. With the
published J2ME wireless toolkit JSR82 in version 2.2
beta or higher Bluetooth connection can be used without
further installations. Helpful examples of programming
Bluetooth with JSR are given in the documentations.
After getting scale’s data and generating the MSD data
format on the mobile phone we have to show how this

strings can be written to a server. Examples in Java can
easily be found in the corresponding documentation but
not one in Symbian C++. Therefore we place our tested
code (Symbian60) here:
First define a new ClientSocket using 4096 byte
send and receive buffer. A Listener is then
implemented, only used if a connection is well
established. The OniTCPClientSocket1Connect as a
method is then called doing this. At last basic settings
like port and IP of the server must be defined.

void CSocketAppContainer::InitComponentsL()
{
iTCPClientSocket1 =
CTCPClientSocket::NewL(4096,4096,0);
TEventT < CSocketAppContainer >
iTCPClientSocket1_OnConnect(this, &
CSocketAppContainer::OniTCPClientSocket1Connect
);
iTCPClientSocket1->
SetOnConnect(iTCPClientSocket1_OnConnect);
iTCPClientSocket1->
SetServerName(_L("82.83.151.53"));
}

To show a simple text on phone’s display whats going
on with the connection we make use of an other method:

void CSocketAppContainer::
OniTCPClientSocket1Connect(CBase * aSocket)
{
 iEikLabel1->
 SetTextL(_L("connection established"));
}

A data transmision can be done with the function
WriteL similar as “write” in java. First step: define a
descriptor containing the data, then change the display
to show someone that something happens and finaly
transmit the interesting data.

void CSocketAppContainer::
OniMenuItem2ViewCommand(TInt aCommand)
{
 _LIT8(Puffer,"01234567890123456789");
 iEikLabel1->SetTextL(_L("transmitting data"));
 iTCPClientSocket1->WriteL(Puffer);
}

It’s clear at last we have to close the transmission, and
to change at least the message on the display.

void CSocketAppContainer::
OniMenuItem3ViewCommand(TInt aCommand)
{
 iEikLabel1->SetTextL(_L("disconnected"));
 iTCPClientSocket1->Disconnect();
}

Understanding this data transfer example one should be
able to program own applications (e.g. exception
handling, byte counter, check sums, error messages and
so on).
The development of 2ME applications for cel-phones
are typically easier than those in corresponding C++ or
Java. In addition, these applications can be programmed
to be compatible with other J2ME-enabled mobile
phones.
Present PDAs, on the other hand, are not suitable for
programming in JAVA because the JVM (JAVA virtual
machine) provides only rudimentary functions here and
no further development progress has been made.

The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005
EMBEC'05 Prague, Czech Republic

IFMBE Proc. 2005 11(1) ISSN: 1727-1983 © 2005 IFMBE

 Conclusions

The MSD standard defines a modular data format to be
used for transmission and storage of sensor-, actuator-
or micro system-related information. Potential areas of
application include medical, environmental and
industrial data acquisition, process monitoring,
automation and control. The use of the MSD format in
mobile terminal devices was demonstrated successfully
by the example of a scale to which a Bluetooth
transmission and receiving unit has been added.
The MSD format provides the basis for an open
interface across system borders, for communication
between different medical devices and applications.
The most important advantages of the MSD Format can
be summarized as follows. Arbitrary data contents can
be sent and is enclosed and expanded by additional
information. Missing information are skipped. Future
manufacturer-specific protocols can be simply
integrated. The XML-consistent tagging allows a simple
and structured reading into the source code.
Furthermore the contents can be better imported into the
database. The MSD data format, which is currently
going through international standardization committees,
is characterized by extreme flexibility and expansion
capability. The authors hope for a wide acceptance of
the standard and its successful application not only in
medicine.
To confirm such a home care scenario a study will be
necessary to show the practical capability.

Acknowledgements

The IMEX joint-project is promoted by the
Bundesministerium für Bildung und Forschung (BMBF)
from June 2003 to Feb 2005 grant no 16SV1594. The
Televisite development is part of the project Teltra,
supported by BMBF/DLR grant no 01EZ0016

References

[1] BISKUP, K., BOLZ, A et al. (2002): ‚Poststationäre

Patientenbetreuung durch Televisite’,
Biomedizinische Technik. Biomedical Engineering
Supp 2002; 1: 354-355

[2] ‘Bestandsaufnahme der Mikrosystemtechnik für
telemetrische Anwendungen in der Medizin’, Institute
of Healthcare Industries, Steinbeis Hochschule Berlin,
Studie 2003

[3] IMEX MSD-Format, verfügbar als ITA bei IEC unter:
http://www.iec.ch/searchtech/italst-e.htm

[4] B. JETTKANT, P. DÜLTGEN, K. BISKUP, B.
CLASBRUMMEL (2004): ‘Micro System Data
Format MSD for Interoperability between Wearable
Devices’, Biomed. Tech. 49, 2004, p. 244 - 255

[5] ORLOWSKI, J., FRIELING, C., MANSOUR, O.,
BISKUP, K., JETTKANT, B., CLASBRUMMEL, B.
(2004): ‘Terminmanagement für die Telemedizin, ein
Zusammenspiel von XML, XSL, Datenbanken und
Cocoon’, BMT, Vol. 49-1, pp. 242-243, 2004

[6] Extensible Markup Language (XML) 1.1, W3C
2004, http://www.w3.org

[7] FRIEDRICH, S., KLOTH, A., SCHÜLER, J.,
SOMMER, K. (2003): ‘XML-basierte
Frameworktechnologie’, http://imp.blubbmon.de

[8] E.T. RAY (2004): ‘Einführung in XML’, O'Reilly,
2004

[9] MOMJIAN, B. (2001): ‘PostgreSQL, Einführung und
Konzepte’, 2001

[10] Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, Internet
Engineering Task Force Working Group (20049
http://www.mhonarc.org/~ehood/MIME/2045/rfc2045.html

[11] M. KROLL, S. HAUSTEIN (2003): ‘J2ME
Developer’s Guide’, Markt+Technik, 2003

[12] S. ESCHWEILER (2003): ‘Java 2 Micro Edition’,
vmi, 2003

[13] M. DE JODE (2004): ‘Programming Java 2 Micro
Edition on Symbian OS’, Symbian Press, 2004

[14] N.N., ‘Developing P800/P900 applications, API
summary’, technical document, Sony Ericsson
Mobile Communication AB, 2004
http://developer.sonyericsson.com

[15] A.N.KLINGSHEIM (2004): ‘J2ME Bluetooth
Programming’, Master's Thesis, , University of
Bergen; 2004

[16] ‘Symbian OS: Designing Bluetooth Applications In
C++ Version 1.1’, Nokia Corporation. 2005

[17] CHRIS DOUBLE (2004): ‘Developing for a
Bluetooth GPS on Symbian Series 60 cellphones
with C++’, http://www.double.co.nz/symbian/bt/
borland_symbian_bluetooth.html

