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Abstract: The subject under investigation is the 
dependence of the location of the optimal sampling 
points on the parameters of compartmental models. 
A new alternative optimal sampling schedule is 
presented, which we have termed the “P-optimal 
design”. The results obtained with the P-optimal 
design were examined and compared with the D-
optimal approach. Analytical and numerical 
solutions are given. Illustrative examples and 
conclusions are presented. The traditional 
approach to SS optimisation requires specialised 
software, while the proposed new method does not. 
P-optimal design enables an element of experiment 
design to be introduced at a very early stage in the 
modelling. 
 
Introduction 
 

Biomedical models have been chosen for 
consideration with output ( )t,py  in the form of the sum 
of exl  exponential terms i.e. compartmental models: 

 

( ) ( )∑
=

− −=
exl

r
rr tppty

1
212 exp,p  (1) 

 
The focus of interest is the optimal reduced SS 

design for the above function. In principle, the reduced 
optimal sampling schedule (OSS) consists of a number 
of samples sn  that is equal to the number of model 
parameters n , i.e. exs lnn 2== . The new criterion 
assumes that each parameter exi lip 2,.,1  , =  has to have 
its representative in OSS design. Traditional criteria [1-
4], for instance D, E and A-optimal design, do not 
provide the opportunity to fulfil this requirement. This 
is because the way in which they search for the OSS is 
not aimed at each parameter individually but at an 
objective function (OF). The following questions are 
posed: 
• Is every ip  equally entitled to have its 

representative in a reduced OSS? 

• Is it possible to form an exact, directly ip  
dependent, optimal (we may refer to it as the “P-
optimal”) reduced OSS?  

• If so, can the P-optimal reduced SS compare with 
and rival the gold standard yielded by the D-optimal 
criterion? 
 

Theory 
 

Let us consider an r-compartmental system. The 
state variable representation of MIMO (multi-input, 
multi-output) on a T÷0  time interval is: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

[ ]1 2

, ,

, ,

, ,.., n

t t t

t t

p p p

= +

=

=

x p A p x p Bu

y p C p x p

p

&

 (2) 

  
where [ ] nipi ,..,2,1 , =p  is the model parameter vector, 

( ) ( ), ,t tu x p  and ( ), ty p  are input, state and output 

vectors and ( )A p , B  and ( )C p  are state, input and 
output matrices. Information concerning the parameters 
is available in the noisy data ( )tz : 
  

( ) ( ) ( )ttt epyz += ,  (3) 
 
The output ( )t,py  is measured as ( )tz , at points 

,..,N,ktk 21 , = , with an additive error ( )te .  
To form the basis for the comparison of different 

experiment designs, and the SS design in particular, a 
measure of the goodness of an experiment is required 
[1-4], for instance a measure related to the expected 
accuracy of parameter estimates. The relationship 
between the obtainable accuracy of the parameter 
estimates and the amount of information available in the 
noisy data ( )tz  is given by Cramer-Rao inequality: 
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( )pM  is the Fisher information matrix and p̂  is the 

vector of the parameter estimates. Function ( )pzf  is 
the conditional probability density of z given p and E is 
the expectation operator, taken with respect to the above 
density function.  

Assuming that the estimator used is efficient and 
that particular entries of the Fisher matrix give a lower 
bound of parameter estimate accuracy, the inequality (4) 
may be considered as equality: ( ) ( )pMp 1cov −= . The 

smaller the entry of ( )pM 1−  is, the greater the accuracy 
of the associated estimate. The planned formation of the 
entries of ( )pM 1−  is the area of optimal experiment 
design and of OSS design in particular. The Fisher 
matrix given by (4) is an uninviting expression because 
f may be a complicated function of p. Assuming 
samples ( )kk tee =  of measurement error are zero mean, 
uncorrelated and have identical normal distribution at 
every kt , the matrix simplifies to the form [2 - 17]: 
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The various criteria used for SS optimisation are 

based on different objective functions (OF). For 
instance [1-17], D-optimal design ( )Mdetmax=OF , 

A-optimal design ( )1min −= MtraceOF  and S-optimal 

design [ ] ⎟
⎠
⎞⎜

⎝
⎛=

− TTOF JJJ
1

max , where J is Jacobean 

⎟⎟
⎠

⎞
⎟⎟
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⎞
⎜⎜
⎝

⎛
y
pJ . Special attention deserves D-optimal design, 

which is related to the volume of the highest probability 
density region for the parameters and may be considered 
the gold standard for SS design. This criterion is 
efficient and has a well-established reputation, although 
it is quite complicated numerically and requires special 
software. 

 
 
 

Location of optimal samples 
 

The dependence of optimal sample location on 
changes in parameter values was examined in detail. Let 
us follow the examination by an illustrative example, a 
2-exp function ( ) ( )tpptppy 4321 expexp −+−=  with 
an initial, true, parameter vector [ ]0.5  5  0.02  20=p . 
To show the dependence, we prepared sets of model 
functions for each 41,..,, ipi = . Each set consisted of 5 
output functions, calculated for 5 different values of the 
parameter, while the other parameters were equal to 
their initial values. Set >< ,my 1 , i.e. >< 11,y , >< 21,y , 

>< 31,y , >< 41,y , >< 51,y  was for 1p  subsequently equal to 

5, 10, 15, 20 and 25. Set >< ,my 2  was for 2p  equal to 

0.0095, 0.0130, 0.0200, 0.0350, 0.0600, set >< ,my 3  for 

3p  equal to 0.1, 2.0, 5.0, 10, 15, and set >< ,my 4  for 4p  
equal to 0.035, 0.060, 0.500, 0.900, 2.000. In Figure 1, 
the outputs ><i,my , over time interval 1500 ÷=t  h, for 

consti =  and 51÷=m  are shown in the same window. 
 

Figure 1: Output functions >< miy ,  over t=0÷150 h, for 
51÷=m  values of 41 , ÷=ipi , while the rest of ip  are 

equal to their initial values. 
 
For each parameter 4,3,2,1  , =ipi  and for 

subsequent outputs 54321  ,, ,,,,my mi =><  optimal 
sampling points were calculated using D-optimal 
design. The results are shown in Figure 2. Interlinked 
circles represent optimal points for consti = , 51÷=m . 
As shown in Figure 2, not every parameter of function 
(1) has equal power to produce an effect on the optimal 
sampling schedule. Changes in 1p  and 3p  (when 2p  
and 4p  became constant) do not produce an effect on 
OSS location.  

Surprisingly, for such different functions as those for 
1=i , within 51÷=m , ( 1p =5,10,15,20,25) the OSSs 

remain the same: D-OSS=[0.0 h, 1.9 h, 9.6 h, 60.2 h]. 
Unlike the above, changes in 2p  and 4p  imply 

changes in the OSS.  
D-OSS for 54321 2,4, ,, ,,,,miy mi ==><  is shown in 

Table 1. Outputs consisting of 2exl >  exponential 
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 functions were investigated similarly. The following 
conclusion is drawn:  

For output functions ( ) ( )∑
=

− −=
exl

r
rr tppty

1
212 exp,p  the 

OSS remains unchanged provided that parameters rp2  
remain unchanged and this does not depend on the scale 
of the changes in 12 −rp . 

Figure 2: D-optimal time points (circles) for subsequent 
functions >< miy , . The time interval is 0÷150 
h, 41÷= i , 51÷=m . The lines are drawn through the 
optimal points for 5 different values of 4 parameters ip , 
while the other parameters are constant.  

 
Table 1: D-optimal SS for ><i,my , 4,2=i , 51÷=m .  

Test 
function 

D-optimal SS Test 
function 

D-optimal SS 

>< 1,2y  [0.0, 2.0, 11.2, 116.8] >< 1,4y  [0.0, 8.1, 31.3, 
90.9] 

>< 2,2y  [0.0, 1.9, 10.5, 87.9] >< 2,4y  [0.0, 4.4, 19.1, 
72.2] 

>< 3,2y  [0.0, 1.9, 9.5, 60.0] >< 3,4y  [0.0, 1.9, 9.5, 60.0]

>< 4,2y  [0.0, 1.8, 8.4, 37.9] >< 4,4y  [0.0, 1.0, 5.5, 55.7]

>< 5,2y  [0.0, 1.7, 7.3, 25.4] >< 5,4y  [0.0, 0.3, 2.3, 52.3]

 
 
P-optimal reduced SS 

 
The P-optimal reduced OSS is the one, which fulfils 

the following: 
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where y

pi
S  is the sensitivity of output y with respect to 

parameter ip . 

Sensitivities y
p r

S
12 −
 are: 
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These do not depend on parameter 12 −rp  and change 

their values from ( ) 1012 ==− tS MAX
r  to ( ) 012 =∞→− tS MIN

r . 
 

 

Figure 3: Sensitivities 4321 , ,,,iS y
pi

=  versus time [h]. 

 
Sensitivities y

p r
S

2
, with respect to rp2 , are: 
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p r

. Figure 3 shows 4321 , ,,,iS y
pi

=  for an 

exemplary 2-exponential model function with an initial 
parameter vector [ ]0.5  5  0.02  20=p . 

The entries for the Fisher matrix (5) are the sum of 
products ex

y
p

y
p l,..,ni,jSS

ji
21  , ==  of the respective 

sensitivities. These products form a matrix [ ]ijP=P , 
entries for which are plotted in Figure 4 for the 

exemplary model function. There are ( )2y
pi

S  on the main 

diagonal of P. The extreme values of iiP  have the same 

time co-ordinate as the maxima of sensitivities y
pi

S . 

Therefore, time points that maximise sensitivities 
y
pi

S also ensure maximal entries iim  of the Fisher 

information matrix (5). 
The following result from equations (8) and (9) and 

Figure 3: 
• Sensitivities y

p r
S

12 −
 have a maximal value 

( ) 1012 ==− tS MAX
r  and this does not depend on the 

values of parameters rp2  and 12 −rp . 

• Sensitivities y
p r

S
2

 have an extreme value at 

rp
t

2

1= : 
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Figure 4: Products 3,421 ,,, i,jPij =  versus time [h]. The 
products are proportional to entries of the Fisher 
information matrix. Proportionality co-efficients 21 yσ  
are assumed to be constant over time. On the main 
diagonal are given iiii Pt ,  which are the co-ordinates of 
the maximal values. 

 
A reduced OSS has to consist of exl2  samples. For 

an increasing exl  the consecutive time points that 
guarantee maximal sensitivities ( 2 4 6p p p> > ) are: 
• 2,1 == sex nl  →   
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For 1=exl  (scalar case) the P-optimal points 01 =t  

and 
2

2
1
p

t =  are exactly the same as those given by D-

OSS. For 1>exl  there is a discrepancy between the 
number of optimal samples that result from analysis of 

y
pi

S  and the number of samples necessary for 

identifying exln 2=  model parameters. The y
pi

S  does 

not assure a sufficient number of candidates for OSS. 
Additional sampling points have to be chosen and the 
candidate has to be easily obtainable on the basis of 
already known parameter estimates and the optimal 

,..642 , t, tt . We examined ct  (the golden cut), at  (the 
arithmetic mean), gt  (the geometric mean) and the 
others candidates. To choose the best candidate for an 
additional sample ( ct , at , gt , the other?) the “leave-
worst-out” method was adopted. This method has been 
published [18] and this can be referred to for further 
details. Briefly, the method uses the D-optimal criterion 
and allows numerous samples to be ordered from the 
most to the least valuable in the SS under test. We 
examined the P-optimal results in comparison with the 
D-optimal results. The comparison involved parameter 
estimates and their accuracy. The geometric mean gt  of 

two values, rt2  and 22 +rt , turned out to be the best 
choice as, simply, this works. Time point 

22212 ++ == rrrg tttt  ensures the best parameter 
estimates and their accuracy.  

In order to prove the usefulness of P-optimality, an 
experiment based on simulation was performed. The 
exact model function with an initial parameter vector 

[ ]0.5  5  0.02  20=p  was taken as the basis for a 
simulation yielding 10,000 sets of data. Each set 
consisted of 150 samples in the time interval 1500 ÷  h, 
with step h 1.0=dt . Simulated data were generated by 
adding to the exact model response uncertainty, selected 
randomly from a normally distributed population of 
values ( )341.0,0N . The parameters and measurement 

error 341.02 =σ  mimic a real experiment [9] on the 
clearance of pregnant mare gonadotrophin from the 
blood plasma. Intravenous injection blood samples were 
withdrawn and the concentration of gonadotrophin in 
the serum was determined. The mean parameters of the 
process were adopted as the true (mean) parameters for 
the simulation. Next, for simulated data, the model 
parameters were re-estimated on the basis of P-optimal 
and D-optimal designs. For each set of simulated data 
the same common OSS was adopted, calculated for true 
parameters. For P-optimal design this was P-OSS=[0.0 
h, 2.0 h, 10.0 h, 50.0 h], while for D-optimal design it 
was D-OSS=[0.0 h, 1.9 h, 9.6 h, 60.2 h].  

After 10,000 simulation runs 10,000 normally 
distributed estimates were calculated for each 

4,..,1, =ipi  and for P-OSS and D-OSS, totalling 80,000 
estimates together. Mean estimates ip , their standard 
deviations 

ii pp devstd =σ , coefficients of variation 
CV[%] and errors ∆  are defined as follows: 
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Obtained 
ipi,σp , CV[%] and ∆  for the P-optimal 

and for the D-optimal designs are in Table 2. Mean 
estimates ip , their standard deviations 

ii pp devstd =σ , 

CV[%] and errors ∆  for   , , 321 ppp  are very similar for 
both criteria. Only for 4p , which is less accurate for P-
OSS (having a larger CV[%]) do they differ to any 
greater extent. 
We have also compared [13] features of D, E, S and A-
optimal design with respect to ip , 

ii pp devstd =σ , 
CV[%] and ∆  in a similar process of simulation and 
parameter estimation to that described above.  

The P criterion, presented in the paper, locates with 
its attributes in the vicinity of the D design. To be 
comparable in quality to the D criterion is the highest 
recommendation for any OSS design. What is more, the 
P design does not require sophisticated software and can 
be immediately implemented on the basis of parameter 
estimates. Each optimisation criterion based on the 
output ( )ty ,p  needs an initial assessment of parameter 
estimates and next sophisticated software has to be 
designed. The D, A or S optimisation is performed for a 
particular function ( )ty ,p  and for chosen criterion. P-
optimal design, when used for the output function (1), 
only needs estimates of parameters rp2 . This enables 
elements of optimal experiment design to be introduced 
at a very early stage of the investigation. Quite often the 
approximate values of parameters can be found in 
published literature or can be predicted on the basis of 
physiology. In this case, so-called “intuitive 
experiment” can, thanks to P-OSS design, be initially 
pre-optimised, which leads to better parameter 
estimates.  

The same analyses and calculations were 
performed for 3=exl . The results were similar to 
presented for 2exl = . Models with 3>exl  are somewhat 
theoretical in significance. 

In order to validate P-optimality, the model 
functions (1) were also examined with different initial 
parameters. The results proved the usefulness and 
robustness of P-optimal design. The measurement noise 
immunities of P and D optimality are similar. Errors 

[ ]%∆ , presented in Table 2, show the ability of both 
criteria to provide estimates of known parameters on the 
basis of erroneous measurements. For 21, pp  and 3p  
the values of [ ]%∆  for P and D optimality are almost 
the same. The result for 4p is somewhat worse; [ ]%∆  is 
greater for P-OSS than for D-OSS. This is the price to 
be paid for the great simplicity of P-OSS. 

 
Table 2. Mean (after 10,000 simulation runs) parameter 
estimates ip , 

ipσ , [ ]%∆  and CV[%] obtained for a 2-
exponential model function with an initial parameter 
vector [ ]5005020020 ., ., ., .=p  for common P-optimal 
and for common D-optimal OSS. 
 

P-OSS ip  
ipσ  ∆[%] CV[%]

1p  01081.19 ⋅  11019.10 −⋅  0.95 5.14 

2p  
31071.19 −⋅ 41022.22 −⋅  1.45 11.27 

3p  
11096.51 −⋅ 11051.12 −⋅  3.91 24.07 

4p  21066.53 −⋅ 222.09 10−⋅  7.32 41.41 

D-OSS ip  
ipσ  ∆[%] CV[%]

1p  
01082.19 ⋅  11013.8 −⋅  0.90 4.10 

2p  
31077.19 −⋅ 41000.16 −⋅  1.15 8.09 

3p  
11099.51 −⋅ 18.60 10−⋅  3.81 16.54 

4p  21047.51 −⋅ 21030.18 −⋅  2.94 35.55 

 
 
Conclusions 

 
The question posed was whether all parameters of 

model function (1) have equal power to produce an 
effect on reduced OSS. As shown on the basis of a 2- 
exponential exemplary model function, changes in 1p  
and 3p  (when 2p  and 4p  are constant) produce no 
effect on OSS location, while changes in 2p  and 4p  
imply changes in the OSS. For output function 

( ) ( )∑
=

− −=
exl

r
rr tppty

1
212 exp,p  the OSS remains 

unchanged provided that parameters rp2  remain 
unchanged.  

An alternative method of sampling schedule 
optimisation, P-optimal design, has been presented. This 
optimisation criterion is based on an analysis of 
sensitivity. The approach presented is related, to a 
certain extent, to the Fisher information matrix 
approach. Yet for P-OSS design the Fisher matrix as a 
whole is not subjected to maximisation but rather its 
individual entries related to individual model parameters 

ip .  

The recipe for an easily obtained P-optimal reduced 
SS for model functions (1) is as follows: 

1. For the biomedical process under investigation, 
choose the model and the parameters. 

2. Perform the biomedical experiment according to 
intuition or standing convention, taking a 
sufficiently large number of measurements over the 
proper time interval. 

3. Choose number 3,2,1=exl ? of exponential terms. 
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 4. Obtain model parameter estimates exi lip 2,..,2,1 , =  
by comparing the measurements with the exact 
model function. Use a convenient objective 
function OF, for instance the least-square criterion. 

5. If the result of step 4 for a chosen exl  is satisfactory 
(decide if the model output function follows the 
measurements sufficiently closely), then proceed to 
step 6. If not, change exl  and perform step 4 again. 

6. Calculate the exact P-optimal reduced SS as 
follows: 

1 2
2

1 2 3 4
2 42 4

1 2 3 4
2 42 4

5 6
64 6

11,OSS 0,  t ,

1 1 1 12,  OSS 0, , , ,

1 1 1 10, , , ,

3,  OSS
1 1 1,

ex

ex

ex

l t
p

l t t t t
p pp p

t t t t
p pp p

l
t t

pp p

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦
⎡ ⎤

= = = = = =⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= = = =⎢ ⎥
⎢ ⎥= = ⎢ ⎥

= =⎢ ⎥
⎢ ⎥⎣ ⎦

 

For further examination of the biomedical system under 
investigation, use the P-optimal reduced SS obtained 
instead of the numerous intuitive SS. 
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