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Abstract: We here analyse the onset of the a-wave of 
the human electroretinographic signal by means of 
the wavelet transform which permits the time-
frequency representation of the signal. The purpose 
is to reveal the transient frequency content of the a-
wave in relation to the luminance of the light 
stimulus. The a-wave is processed by the Haar and 
the Mexican hat mother wavelets. They provide 
complementary information, the Haar is sensitive to 
the changes in signal slope, whereas Mexican hat is 
directly affected by the amplitude of the a-wave. 
Both evidence the asymmetry of the a-wave and its 
dependence on the luminance. The results are 
presented as isometric lines in a time-frequency 
diagram. They show that the frequency content is 
negligible at the beginning and at the end of the 
wave, but it is relevant (and constituted by low 
frequencies) in the central zone of the wave. 
 
 
Introduction  
 

The electroretinogram (ERG, Figure 1) is the 
recording of the retinal response to a light pulse. It 
consists of a temporal sequence of components (a-, b-, 
c-, d-wave, late potentials) arising from various retinal 
layers. 
 

 
Figure 1: Human ERG recorded in the range of log(I/I0) 
from +1.5 to -1 with step -0.5 ulog (see text) and 
truncated at 100 ms. The shaded area indicates the time 
interval of interest. 

 
Understanding the specific features (onset, time 

delay, amplitude, line shape and so on) of ERG 

components and their relationships is the principal aim 
of the research in ocular electrophysiology. We are 
interested in the time-frequency content of the first 
31.25 ms of the a-wave, it appears in the ERG as a small 
negative potential characterised by two dips, labelled as 
a1 and a2 in Figure 1. They are attributed to the 
contribution of the photoreceptoral activities of the 
cones and rods, respectively [1-3]. The relative 
intensities of their responses and times of occurrence 
depend on the luminance as evident from Figure 1. 

Since the retinal photoreceptors have responses and 
activation times not uniform in time, the response 
frequency components have time dependent features. 
The study of this aspect, useful in understanding the 
phenomena underlying the early steps of 
phototransduction, can be partially accomplished by the 
Fourier analysis. A more sophisticated approach 
involves the wavelet analysis (WA), able to describe the 
time and frequency characteristics of a non stationary 
signal [4-6], it is applied here to the photoreceptoral 
response. 

To investigate the a-wave, we have used two mother 
wavelets (Haar and Mexican hat, HW and MHW, 
respectively). The results are reported in Figures 4-9 as 
isometric lines that reveal the changes in the wavelet 
transform related to the variation of the value and 
frequency content of the temporal signal. 

 
Main features of the temporal signal 

 
The incomplete knowledge of both the temporal cut-

off of the a-wave and the onset of the following b-wave 
complicates the study of the a-wave ERG component. In 
conditions of high luminance (curve labelled 1.5), the 
dip a1 occurs at about 13.1 ms, whereas a2 occurs at 
about 21 ms and is less pronounced. At intermediate 
luminance the two dips tend to coalesce into one dip 
only. At low luminance, the second dip tends to 
predominate with respect to the first one. The 
characteristic times of both increase with decreasing the 
luminance.  
 
Main features of the Wavelet Analysis 

 
The application of the mathematical transforms to a 

generic signal is very useful for obtaining information 
not directly deducible from its original temporal 
diagram. In fact, the description of a signal in the time 
domain is not always sufficient for its accurate analysis, 
since significant information about its frequency content 
is usually hidden. The Fourier transform is appropriate 
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 for the analysis of stationary signals, but it is not 
adequate for that of biological/medical data. In fact, in 
these cases, it is important to know not only the values 
of the component frequencies but also their times of 
occurrence. The WA provides a time-frequency 
representation of the signal through the use of functions 
(wavelets) time-and/or frequency-localised. It uses 
windows of different size and time location for 
computing the various frequency components. It is thus 
possible to identify the constituent frequencies and to 
determine their temporal features. The WA is, hence, a 
powerful tool to describe the dynamics of complex non-
linear processes characterised by interactions in the 
space-time framework. 

In order to be classified as a wavelet, a function ψ(t) 
must satisfy certain criteria.  
1-It must have a finite energy. 
2-The admissibility condition must hold. It implies that 
the negative and positive areas under the curve must 
cancel out.  
3-The average value of the transform ψ(ω) must be 
equal to zero. 

These properties imply that the wavelet must be 
limited in time.  

Wavelets satisfying condition 2 can also assimilated 
to band pass filters. They allow the transmission of 
those signal components which fall within a finite range 
of frequencies accepted by the filter. 

The wavelet transform returns a data vector of the 
same length of the input data. The analysing wavelet is 
first multiplied by the a-wave signal, then the 
coefficients are calculated from the evaluation of the 
area under the resulting curve. The area volumes can be 
plotted in the time-scale domain providing the three-
dimensional representation of the signal. The wavelet 
transform is defined according to  

( ) ( ) t
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N
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In (1), x(t) is the signal, ψ∗[(τ − τ) /s] is the complex 
conjugate of the mother wavelet, N is the number of 
samples constituting the signal, τ indicates the temporal 
delay of the wavelet and s the width of the window, δt is 
the sampling time (time resolution of the signal). The 
translation parameter τ and the scale s are related to the 
time and to the inverse of the frequency band, 
respectively. High scales (global views) correspond to 
coarse frequencies resolution, whereas low scales 
(detailed views) to fine frequency resolution. If a signal 
has a repeated pattern, and if the pattern of the wavelet 
is similar, the WT coefficients assume extremal values 
when both overlap. Therefore, WT may be considered 
as a measure of similarity between the two signals. It 
provides sufficient information about the analysis and 
synthesis of the original signal. 

In computational practice, the wavelet transform is 
computed for a limited range of scales, conditioned by 
the sampling interval and the number of samples. At the 
beginning, the most compressed wavelet is placed at τ = 
0. It is displaced (by varying τ) it is dilated (by 

increasing s), the procedure is repeated until the largest 
dilatation (s = N δt /2) is reached. To each value of s 
and τ there corresponds a point in the translation-scale 
plane, in a three-dimensional plot, the ordinate is the 
value of the transform. 

In an ideal situation, every wavelet should cover a 
single point in time and a single point in frequency. This 
aim cannot be achieved since if one wants to know a 
signal at a certain instant of time, nothing can be said 
about its local frequency behaviour and vice versa, this 
is analogous to the Heisenberg uncertainty relation in 
quantum mechanics. The WA gives, hence, good time 
and poor frequency resolution at high frequencies, good 
frequency and poor time resolution at low frequencies. 
To small scales there correspond small time 
uncertainness appropriate to detect high frequency 
components characterised by a rapid time variation. 
Slowly varying signals, on the other hand have low 
frequency components and large windows are 
appropriate. 

There exist a variety of wavelets. The particular 
choice depends on the signal to be processed and on the 
requested information. Selection of a wavelet shape will 
show a part of the raw signal with specificity. In the 
actual case, the a-wave has a near gaussian shape and its 
average temporal width is about 18.5 ms, the half width 
of the Fourier transform is about 35Hz. Consequently, 
its frequency content falls in a large band, and a wavelet 
transform suitable to separate the frequency 
components, such as the Morlet transform is not 
appropriate. We have, hence, chosen two real wavelets 
(Figure 2) that supply a good time frequency resolution: 
the Haar (step function) and the Mexican Hat (second 
derivate of a gaussian).  

 

Figure 2: Left: Haar function; right: Mexican hat 
 

They differentiate in the information can be 
gathered. The first one has the characteristic of being 
conceptually simple, fast, symmetric and, orthogonal, 
but it has the disadvantage of being discontinuous and 
therefore not differentiable. It is well localized in time 
but the wings of its Fourier spectrum determine a bad 
localization in the frequency domain. The transform 
output is affected by the variation of the slope of the 
temporal signal: if the slope is constant in the time 
interval covered by the wavelet, the output is null; if it 
varies, the output of the transform is proportional to this 
variation (in value and sign).  

The MHW is, on the other hand, a continuous 
wavelet, not orthogonal, defined by (second derivative 
of a Gaussian): 
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The output of the MHW transform is directly 

conditioned by the value of the temporal signal, it is 
hence suitable to isolate local minima/maxima of the 
signal at the selected time. A constant d-c shift of the 
signal changes the output that depends on the amount of 
the area delimited by the signal, regardless of its shape. 
A change in sign of the signal causes a change in the 
output. With respect to the Haar transform, time 
localization of the MHW is poorer, but frequency 
localization is improved. 

 
Materials and methods 

 
ERG acquisition 

The study was carried out on 10 subjects (20 eyes) 
not affected by ocular diseases, with normal ERGs, 
visual acuity of 20/20 (range ±2) and negligible 
differences between the two eyes. ERGs were recorded 
following our routine methods [7] by means of Henke’s 
corneal electrodes. The indifferent electrodes were 
frontal, with the ground electrode on the forehead. 
Electrode impedance was kept under 5 kΩ. Stimuli were 
stroboscopic white flashes of 50 µs presented in a 
Ganzfield integrating sphere of 40 cm diameter. The 
standard luminance, denoted I0, was 1.7 cd*sec/m2, it 
was varied in the range +1.5 ulog, –3.5 ulog by neutral 
Kodak Wratten filters in steps of -0.5 ulog. In order to 
semplify the labels in the figures, we have indicated the 
variable luminance I in terms of log (I/I0). The repetition 
interval of the stimulus was 15 s and its duration was 50 
µs. All subjects were submitted to maximal papillary 
dilatation (≥ 7mm) with N-ethyl-(α-picolyl) tropicamide 
1%, and the cornea was anaesthetised using 
oxibuprocaine hydroclorate 4%. They were then dark-
adapted for 30 minutes, in accordance with the 
standards for clinical electroretinography [8]. The lower 
luminance limit (denoted –3.5) was reached, with steps 
of 0.5 ulog, using neutral Kodak Wratten filters. 

Original data was sampled with a frequency of 1,024 
Hz and stored as ASCII files in the mass memory for 
subsequent retrieval and analysis. Each clinical analysis 
consisted of 11 traces (each containing 512 values 
covering the time interval of 500 ms.). Each trace was 
obtained by averaging at least 3 responses. 
 
Computational approach  

 
The sampling interval δt was set equal to 0.97563 

ms. Each record contains 32 values corresponding to 
31.25 ms. In the WA the smallest scale was set s0 = 2δt 
and the largest one sMax= 32δt. The corresponding 
frequency range is 32–512 Hz. The temporal translation 
was in the range 0–31.25 ms with step of 0.97563. Since 
we were dealing with time delimited signals, errors may 
occur in the computation of the wavelet transforms for 
large windows located at the temporal extremes of the 

signal. The periodic conditions were adopted in order to 
avoid anomalies in the results. The wavelet amplitude 
intensity is usually represented by a surface in a three-
dimensional space. The figures, presented here, are bi-
dimensional plots showing the projections of these 
surfaces, on the plane (s, τ) as iso-lines. The red/blue 
areas correspond to positive/negative values of the 
transform, respectively, the areas in the green-yellow 
range represent intermediate values. The upper 
horizontal axis reports the scale in ms from 1 up to 16 
(linear with step 3), the lower one the corresponding 
frequencies in Hz from 512 up to the 32.8, logarithmic. 
The vertical axis corresponds to the translations of the 
window related to the parameter τ, by the coefficient 
0.97563. The characteristic features of the transform are 
represented by the contours shapes of the isometric 
lines. The contours of the iso-lines have been smoothed 
to simplify the reading of the results. 

 
Results and Discussion 
 

We here limit the discussion to three representative 
a-wave corresponding the values of log(I/I0) equal to 
+1.5, +0.5, -0.5. The relative traces are reported in 
Figure 3.  
 

-0.5
-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0 4 8 12 16 20 24 28 32
Time (ms)

R
et

in
al

 re
sp

on
se

  ( µ
V)

 

+ 1.5

+ 0.5

- 0.5

 
 
Figure 3: Temporal behaviour of the a-wave recorded at 
log(I/I0) equal to +1.5, +0.5, -0.5 in the range of 32 ms. 
The curves have been smoothed to simplify the reading.  

 
It is evident the dip dependence on the luminance 

and its shift toward greater times as the luminance is 
reduced.  

It is convenient to separate the discussion of the 
results of the two transforms although at least one 
aspect is commons to both: asymmetries in the signal 
produce deformed contours lines, in different manner in 
the two transforms.  

 
Haar Transform 
 

Figures 4-6 report the trend of the iso-lines of the 
Haar transform relative to the values of log(I/I0) equal to 
+1.5, +0.5, -0.5, respectively. Two regions characterised 
by nearly elliptic concentric iso-lines are evident: the 
blue one occurs at smaller times and corresponds to 
negative variations of the slope, the red one indicates 
positive slope and occurs at greater times. These zones 
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 are separated by a green area that indicates values of 
constant slope, these are also found at the beginning and 
at the end of the analysis time where the signal is slowly 
variable. The regions of more intense colour indicate the 
times of the greatest variation of the temporal signal 
slope.  

 

 
 

Figure 4: Haar transform applied to the a-wave recorded 
at the largest luminance (log(I/I0) = +1.5). The abscissa 
corresponds to the scale (red) in ms and the 
correspondent frequency bandpass in Hz (black), the 
ordinate indicates the locations of the window, to have 
the delay time (in ms), one must multiply by 0.97563. 
 

 
 
Figure 5: As Figure 4 with log(I/I0) = +0.5 
 

 
 
Figure 6: As Figure 4 with log(I/I0) = -0.5 

 

In Figure 4, the left apex of the blue area, at small 
values of the window occurs at 9.6 ms, it corresponds to 
the time of occurrence of the largest temporal variation 
of the signal and moves slowly towards smaller values 
of time as the width of the window increases. This is 
related to the fact that the slope is not constant and large 
windows comprehend large portions of asymmetric 
signal. However, the contour is somewhat regular as 
consequence of the fact that in the time interval covered 
by a generic window, the signal is monotone. At greater 
times, the green area takes place indicating that the 
temporal signal is slowly variable. The signal then tends 
to increase and the area switches toward red colours, at 
small values of the window a bifurcation is evident 
since an inflexion region is present between the two 
dips. The two apexes occur at 16 ms and 25.6 ms, 
respectively. As the window becomes greater and 
greater, the two dips may fall inside the same window, 
the resolution becomes poorer and poorer, the 
bifurcation tends to disappear and the two apexes 
coalesce into one at the intermediate time of about 24 
ms. At this value of the scale, the time uncertainness is 
so high that the dips are smeared out.  

Figures 5 and 6 display a similar trend with some 
relevant differences: i) the iso-lines move toward higher 
times as a consequence of the luminance reductions, ii) 
their shapes change since the temporal signal deforms, 
in particular for log(I/I0) = +0.5, the two dips coalesce, 
it follows that the bifurcation in Figure 5 disappears, 
whereas for log(I/I0) = -0.5, (Figure 6) the two apexes 
reappear with some differences.  

This fact is in line with the experimental evidence 
that, in the temporal signal, the relative intensity of a dip 
with respect to the other one depends on the value of the 
luminance. 

 
Mexican hat  Transform 
 

Figures 7-9 report the trend of the isolines of the 
Mexican hat transform relative to the same values of 
log(I/I0). 
 

 
 
Figure 7: As Figure 4. Transform calculated using the 
MHW.  
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 The central zone in Figure 7 is constituted by iso-
lines that cover areas in the green – red range. The green 
region corresponds to small values of the scale, the 
amount of signal captured by the window is small, but 
the resolution is good and the two dips are resolved. The 
first is located at values of τ of 12.8 ms, the second at 
22.4 ms, these correspond to the times of occurrence of 
the two dips in the temporal signal. As the window 
broadens the amount of signal falling inside it increases, 
smaller frequencies enter into the region delimited by 
the iso-lines determining the colour switch toward the 
red. The resolution becomes poorer and the dips are no 
longer resolved and a single apex (at τ ≈ 16 ms) appears 
as s is greater than 8.5ms.  

The deep blue areas, corresponding to values of the 
transform close to zero, are ascribed to the cancellation 
among the positive contributions (product of the signal 
and of the MHW) and the negative ones in the 
calculation of the transform.  

Figures 8 and 9 yield a similar behaviour with the 
difference, already mentioned, that the temporal signal 
deforms  and moves toward  reater times.  In particular, 

 

 
Figure 8: As Figure 5. Transform calculated using the 
MHW. 

 

 
Figure 9: As Figure 6. Transform calculated using the 
MHW. 

 

the tendency of two dips to coalesce, appears in Figure 
8 as an apex flattening in the central zone. The 
translation toward higher values of τ must be attributed 
to the asymmetric shape of the temporal signal. 
 
Confidence interval 

 
The confidence interval is defined as the probability 

that the true wavelet power, ψ2(τ,s), at a certain time 
and scale, lies within a certain interval about the 
estimated wavelet power. The confidence interval for 
ψ2(τ,s), is defined according to: 
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where p is the chosen significance (p=0.05 for the 95% 
confidence interval) and χ2(p/2) represents the value of 
χ2 at p/2. Using (3) one can then determine the 
confidence intervals for the peaks in a wavelet power 
spectrum to compare them with the mean background or 
against other peaks. 

 
Conclusions 

 
The present results demonstrate the usefulness of the 

wavelet analysis to individuate frequency transients in a 
non-stationary signal such as the human a-wave. This 
applies to Figures 4-6 as well as to Figures 7-9.  

In fact, from the analysis of the first set of figures 
regarding the Haar wavelet, we note that the value of 
this transform is conditioned by the slope of the signal. 
In the temporal intervals in which the slope is 
appreciably variable, the evaluation of the transform 
returns high values either positive or negative. They 
yield the occurrence of a large amount of frequency 
components in which the low frequencies predominate.  

A complementary information can be deduced from 
the analysis of Figures 7-9 which evidence the content 
and the time of activation of the various frequency 
components constituting the temporal signal. At the 
beginning and at end of the wave, this content is small, 
vice-versa in the time interval covering the central part, 
a large amount of oscillation modes give a relevant 
contribution. This is large for low-frequency modes and 
decreases as long as greater frequencies are considered. 
The amount of involved frequencies is weakly 
dependent on the luminance, whereas the times of 
activation are strongly conditioned by the luminance. It 
appears that, the low frequency content is less affected 
by the luminance than the higher one. This fact is 
related to the fast shape variation of the signal at times 
close to those of occurrence of the two dips and to their 
dependence on the luminance.  

It is interesting to relate the above considerations 
with the analysis of the Fourier spectra of the signals 
(Figure 3) reported in Figure 10. These agree with the 
results of Figures 4-6 and 7-9 for what concerns the 
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 frequency content, but they are unable to reveal the 
temporal distribution of the various frequencies. The 
predominance of the low frequencies can also be 
explained in the context that the shape of the temporal 
signal approximates that of a gaussian, whose frequency 
spectrum is characterised by a large amount of low 
frequency components.  
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Figure 10: Spectral distribution of the signals plotted in 
Figure 3. The ordinate reports the modulus of the 
Fourier transform. The units are arbitrary, but the factor 
of proportionally is the same. 

 
For completeness, it is useful to report the frequency 

spectra of the two wavelets used here. See Figures 11 
and 12.  
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Figure 11: Spectral distribution of four Haar functions 
characterised by different widths in arbitrary units. 
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Figure 12: Spectral distribution of six Mexican hat 
functions characterised by different widths in arbitrary 
units. 

These spectral behaviours are quite different, even 
for different window widths. They have in common the 
null value of the transform at the zero frequency, this is 
a consequence of the fact that the area enclosed by the 
two wavelets is null.  

The spectral distribution of Haar function is 
characterised by various damped oscillations related to 
the temporal discontinuity of the wavelet, it follows that 
it covers a wide frequency interval. In the Mexican Hat 
spectrum, on the other hand, only one peak is present. In 
both cases the spectral width broadens as the width of 
the wavelet decreases. 

From the previous considerations, it turns out that 
the present approach provides a suitable compromise 
between time domain and frequency domain localisation 
of a signal.  

The application of wavelet transforms in 
electrophysiology is a relatively new field of research, 
therefore, some aspects such as the choice of an 
appropriate mother wavelet, scale parameters and delay 
times, needs a further investigation to enhance the use 
of this signal processing method. In particular, it is 
auspicated that controversial aspects concerning the 
typology of the processes underlying the early retinal 
response may be clarified. 
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