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Abstract: The encoding of mechanical stimuli into 
action potentials in two types of spider 
mechanoreceptor neurons is modeled by use of the 
principal dynamic modes (PDM) methodology. The 
PDM model is equivalent to the general Wiener-Bose 
model and consists of a minimum set of linear 
dynamic filters (PDMs), followed by a multivariate 
static nonlinearity and a threshold function. The 
PDMs are obtained by utilizing measurements of 
pseudorandom mechanical stimulation and the 
resulting action potentials. The static nonlinearity is 
computed as the locus of points of the latter that 
correspond to output action potentials. The 
performance of the model is assessed by computing 
receiver operating characteristic (ROC) curves and 
quantified by computing the area under the ROC 
curve. Three PDMs are revealed by the analysis. The 
first PDM exhibits a high-pass characteristic, 
illustrating the importance of the velocity of slit 
displacement in the generation of action potentials at 
the mechanoreceptor output, while the second and 
third PDMs exhibit band-pass and low-pass 
characteristics respectively. Differences between the 
Type A and B neurons are observed in the zeroth-
order Volterra kernels  as well as in the magnitudes 
of the second and third PDMs that perform band-
pass and low-pass processing of the input signal 
respectively. 
 
Introduction 
 

Mechanoreceptors perform the detection and 
transduction of mechanical stimuli in many types of 
animal tissue, providing many inputs to the central 
nervous system. In addition to sensory functions, such 
as hearing, touch and balance, mechanoreceptors are 
involved in regulatory mechanisms in the 
cardiovascular, respiratory and renal systems. In order 
to accommodate a broad range of naturally occurring 
stimuli, mechanoreceptors are characterized by adaptive 
properties with respect to gain and operating range and 
they can subsequently exhibit a wide range of firing 
patterns. 

The extraction of mathematical models that can 
accurately predict the responses of mechanoreceptors to 
a wide range of physiological stimuli can lead to a better 

understanding of the underlying physiology and the way 
in which the central nervous system receives 
information from internal and external mechanical 
events. However, the dynamic behavior of 
mechanoreceptors is not yet fully understood due to 
their small physical size and limited accessibility, as 
well as their complex and nonlinear characteristics. In 
previous modeling studies of mechanoreceptor function, 
linear techniques such as transfer function analysis have 
been employed as well as nonlinear Volterra-Wiener 
models have been utilized to describe the function of 
mechanoreceptors [1]-[3]. 

In the present study we model the dynamic 
transduction of mechanical stimuli into action potentials 
in two types of mechanoreceptor neurons from a spider 
lyriform organ that are morphologically similar but 
exhibit different dynamic characteristics. Type A 
neurons are rapidly adapting and produce only one or 
two action potentials in response to step electrical or 
mechanical stimuli, while Type B neurons adapt more 
slowly and produce a burst of many action potentials 
with similar stimuli. 

For this purpose, we employ the principal dynamic 
mode (PDM) methodology for spike-output systems [4]. 
The PDM method aims to extract the most significant 
dynamic components of a nonlinear system in the form 
of a minimum set of linear filters that process the input, 
after estimating its first and second-order Volterra 
kernels [4]. The PDM outputs feed a multiple-input 
static nonlinearity and a subsequent threshold function 
to yield the output action potentials. This study extends 
our previous findings employing the PDM methodology 
to model the dynamics of the conversion of mechanical 
displacements into transmembrane receptor current and 
potential in a spider mechanoreceptor [5].  
 
Materials and Methods 
 

Animal protocols were approved by the Dalhousie 
University Committee on Laboratory Animals. Adult 
spiders, Cupiennius salei, of either sex were taken from 
a laboratory colony. A concave piece of cuticle 
containing the intact VS-3 lyriform organ, was dissected 
from the patella of an autotomized leg and mounted on a 
custom designed holder. The discontinuous (switching) 
single electrode current-clamp technique was used to 
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 record cell membrane potentials with a SEC-10L 
amplifier (NPI Electronic, Tamm, Germany). For 
mechanical stimulation, a piezoelectric stimulator with 
position control feedback (LVPZ translator, PZT 
controller; Polytec Physik-Instrumente, Waldbronn, 
Germany) was mounted on a 3-dimensional 
micromanipulator that could position the tip of the 
stimulator probe beneath the outer surface of the VS-3 
slits. 

Pseudorandom Gaussian white noise was generated 
by a digital computer. Mechanical displacement was 
sensed by the position transducer in the piezoelectric 
stimulator, which had a low-pass characteristics with a 
corner frequency of ~80 Hz. Membrane potentials, 
including action potentials, were recorded from the 
amplifier. The duration of each recording was 
approximately 80 seconds. 

Action potentials were separated from the 
underlying continuous membrane potentials and were 
digitally filtered by convolution with the sin(x)/x 
function to band-limit them to the range 0-500 Hz and 
produce a regularly sampled (1 ms interval) signal. 
Sampled analog signals of mechanical displacement 
were digitally re-sampled by averaging to give a 1 ms 
sample interval. 

The PDM model of action potential encoding is 
shown in Fig. 1 and is equivalent to the Wiener-Bose 
model with a minimal set of linear filters },...,,{ 21 mLLL . 
The discrete-time input signal x(n) is convolved with the 
latter and the outputs are then fed into a multiple-input 
static nonlinearity, the output of which is compared to a 
threshold p to yield the model output. 
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Figure 1: Principal Dynamic Mode (PDM) model of 
action potential firing in a spider mechanoreceptor 

 
The PDM methodology [4] aims at extracting a 

minimum set of linear filters that remain functionally 
equivalent to the Wiener-Bose model, which constitute 
the PDMs of the system. This leads to compact 
representations that facilitate model interpretation, 
which is important in the case of physiological systems, 
as in the present study. The PDMs can be extracted 
from the estimates of the Volterra kernels of the system, 
as indicated below. The general discrete-time Volterra 
model for a finite-memory, Q-th order nonlinear system 
is: 
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where ),..,( 1 qq mmk  are the linear (q=1) and nonlinear 
(q>1) Volterra kernels of the system, which describe the 
linear and nonlinear dynamic effects of the input on the 
output respectively. A practical way to estimate the 
kernels by employing stimulus-response data (in our 
case, mechanical displacements and the resulting action 
potentials) data is the Laguerre expansion technique [6], 
which expands the kernels in terms of the discrete-time 
Laguerre orthonormal basis and uses least-squares 
fitting to estimate the expansion coefficients. One way 
to estimate the PDMs from the first and second-order 
kernel estimates is to construct the matrix [4]: 
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where 0k , 1k , 2k  are the zeroth, first and second-order 
Volterra kernels respectively. R is real symmetric, 
therefore its eigenvalues are always real. By selecting 
the most important eigenvalues iλ  of R on the basis of 
their magnitude, the corresponding orthonormal 
eigenvectors iµ  define the PDMs of the system, i.e., the 
impulse responses of the linear filters of Fig. 1 [4]. The 
number of significant eigenvalues determines the 
number of the PDMs sufficient to describe the system 
dynamics.  

The multivariate static nonlinearity ( )muuuf ,...,, 21  
is defined as the locus of points that correspond to 
output action potentials. Therefore, f was constructed by 
first convolving the input with the PDMs, separating the 
space of the PDM outputs ( )muuu ,...,, 21  into m-
dimensional bins, counting the number of points 
corresponding to output action potentials and dividing 
this number by the total number of points within each 
bin. Thus, ( )muuuf ,...,, 21  yields a measure of the 
probability of action potential firing as a function of the 
PDM outputs.  

The PDM model performance in terms of predicting 
output action potentials correctly is assessed by 
constructing receiver operating characteristic (ROC) 
curves. In our case, ROC curves are plots of the true 
positive fraction as a function of the false positive 
fraction achieved by the PDM model for all output 
threshold p values between 0 and 1. Therefore, it was 
constructed by computing the binary output predicted 
by the PDM model for all values of threshold p between 
0 to 1, counting the number of true and false positives 
and comparing the number and location of the predicted 
action potentials to those of their true counterparts. 
Finally, as a measure of the model performance, we 
computed the area under the ROC curve, which lies 
between 0 and 1. Area values that are closer to 1 denote 
better performance. 

Of the approximately 80000 data points (sampled at 
1 KHz) that were available for each of the four different 
neurons, segments of 5000 points were used to estimate 
the Volterra kernels and PDMs of the system. The 
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 remaining data points were employed to construct the 
static nonlinearity by mapping the PDM output values 
onto the output action potentials (35000 points) and for 
model validation (35000 points).  

 
Results 
 

Data from four neurons (2 Type A and 2 Type B) 
were used for the analysis. Eigendecomposition of the 
matrix R given by Eq. (5) revealed three significant 
eigenvalues, the corresponding eigenvectors of which 
yielded the three PDMs µ1, µ2 and µ3. Type B neurons 
were characterized by larger eigenvalue magnitudes. 
Representative PDMs are shown in Fig. 2 in the time 
and frequency domains for the one Type A and one 
Type B neuron, after scaling by the square root of the 
corresponding eigenvalue. The first (most significant) 
PDM has a high-pass (differentiating) characteristic, 
suggesting that its output depends primarily on the slit 
displacement velocity and secondarily on the 
displacement magnitude. The second PDM has a band-
pass characteristic with a peak at around 180 Hz and a 
high-frequency plateau, implying dependence on the 
magnitude of slit displacement (position) in addition to 
the resonant behavior around 180 Hz. The third PDM 
has a low-pass characteristic that implies dependence 
only on the integrated (cumulative) slit 
displacement/position over a 6 ms time-window. The 
magnitude of the first PDM is similar between the two 
neuron types (with the type B neuron exhibiting a 
greater initial slope below 180 Hz), but the magnitude 
of the other two PDMs tended to be larger for the Type 
B neurons. 
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Figure 2: Representative PDMs, scaled by the square 
root of the corresponding eigenvalue for one Type A 
and one Type B neuron in the time and frequency 
domains. 

 

In order to illustrate the combinations of PDM 
output values that gave rise to action potentials at the 
mechanoreceptor output, we show three-dimensional 
scatter plots of the PDM output values that 
corresponded to action potentials (blue) along with 
those that did not (red) for the Type A and Type B 
neurons in Fig. 3 and 4 respectively, as well as their 
corresponding two-dimensional projections on the 

},{ 21 uu  planes in Fig. 5. The construction of the three-
input nonlinear function ( )321 ,, uuuf  was based on 
these scatterograms through three-dimensional 
histograming that yielded the “Probability of Firing 
Function” (PFF) for each neuron. The form of the 
scatterograms and their projections indicates that both 
neuron types exhibit directionality with respect to the 
PDM output values (e.g., output action potentials 
corresponded to both positive and negative values of u1, 
u3, but almost all the output action potentials 
corresponded to negative values of u2). 

 

 
 
Figure 3: Scatter plot of the PDM output values that 
correspond to action potentials (blue) for a Type A 
neuron. 
 

 
 
Figure 4: Scatter plot of the three PDM output values 
that correspond to action potentials (blue) for a Type B 
neuron.  
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 Since ( )321 ,, uuuf  is three-dimensional, we plot its 
two-dimensional projection (marginal probability) on 
the },{ 21 uu  planes, ),( 21 uufM  in Fig. 5. Its form is 
similar for the Type A and Type B neurons, in 
agreement to the observations made for the 
scatterograms. The two-dimensional projection is 
symmetric with respect to the magnitude of u1 around 
zero, suggesting that ),( 21 uufM  depends on the 
magnitude of the slit displacement velocity but not on 
its direction. On the other hand, it is asymmetric with 
respect to u2, yielding significant values for negative u2 
values only and implying directional dependence on the 
second PDM output. Overall, the asymmetric behavior 
was more pronounced for the output of the band-pass 
PDM u2. 
 

 
 
Figure 5: Projection of the three-dimensional static 
nonlinearity ( )321 ,, uuuf  on the },{ 21 uu  plane (marginal 
probability function) for one Type A and one Type B 
neuron. 
 

 
 
Figure 6: ROC curves for a Type B neuron for two (red) 
and three (black) PDM models.  
 
Table 1: Area under the ROC curve for output action 
potential prediction, Type A and B neurons. 
 

 Type A Type B 

 Neuron 1 Neuron 2 Neuron 1 Neuron 2 

Linear 0.989 0.953 0.919 0.956 

µ1, µ2 0.988 0.936 0.938 0.958 
µ1, µ2, µ3 0.989 0.969 0.960 0.965 

 
The ROC curves for the in-sample data (i.e., the 

points that were used to compute the PFF) and for the 
validation (out-of-sample) data for a Type B neuron are 

shown in Fig. 6 for a histogramming bin size of 0.1. The 
ROC curves for the rest of the neurons were found to be 
similar to those of Fig. 6. When three PDMs were 
utilized (black), i.e., a three-dimensional PFF was 
constructed, the performance improved considerably 
compared to two PDMs (red), which yielded a two-
dimensional PFF. The ROC curve is a suitable measure 
of model performance in terms of predicting output 
action potentials, since it yields an overall assessment of 
performance for all values of the threshold p, which can 
be quantified by calculating the area under the curve. 
The values of the area under the ROC curves of Fig. 6 
were equal to 0.930/0.957 (in-sample data) and 
0.938/0.960 (validation data) for two/three PDMs 
respectively. The model performance for the validation 
data set is thus comparable to its in-sample counterpart, 
corroborating the validity of the modeling results.  

The corresponding values for the validation data 
sets for all four neurons are given in Table 1 for a 
histogramming bin size of 0.1. For smaller bin sizes 
(i.e., finer resolution in the PFF computation), the 
performance improved for the in-sample data but 
degraded considerably for the validation data. This is to 
be expected, since the number of data points 
corresponding to action potentials was low compared to 
the total number of data points. The best overall 
performance for both in-sample and validation data was 
observed for a bin size of 0.1. For comparison purposes, 
the values of the area under the ROC curve achieved by 
linear Volterra models are also given. Interestingly, 
nonlinear models improve the performance marginally 
for one Type A neuron, while this improvement is 
substantial for all other neurons, especially for the two 
Type B neurons. This suggests that the nonlinear 
component is stronger in the latter. 
 
Discussion 
 

The dynamics of the two neuron types were 
generally similar, although some differences were 
observed in the magnitude of the second (band-pass) 
and third (low-pass) PDMs, which were found to be 
larger for Type B neurons. Differences were also 
observed in the frequency-domain slope of the first 
(high-pass) PDM below 180 Hz, which may be 
significant for the overall response characteristics of the 
neuron, since most of the mechanical stimulus power 
was below 180 Hz. The constant component of the 
model (zeroth-order kernel), which is related to the 
average firing rate, was also found to be considerably 
larger for Type B neurons. These observations extend 
our previous modeling studies of the transduction of 
mechanical stimuli into intracellular receptor current 
and voltage [5]. 

Nonlinear models were found to improve the model 
performance considerably, when compared to linear 
models, in terms of both prediction NMSE (10-15% 
reduction) and area under the ROC curve (Table 1). 
Third-order Volterra models further improved the 
output prediction of second-order models, resulting in 
about 5% reduction of the prediction NMSE (from 
around 80% to 75%). However, second and third-order 
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 models yielded comparable ROC curve area values. 
This may be attributed to the fact that third-order 
models built mainly on the contribution of second-order 
models to both true and false positive spikes, without 
altering significantly the relation between true and false 
positives. The improvement observed for nonlinear 
models was more pronounced for Type B neurons, 
implying a stronger nonlinear component in the 
dynamics of the latter. The presence of third-order 
nonlinearities in the mechanoreceptor function is also 
suggested by the form of the calculated PFFs, which 
exhibited half-wave rectification characteristics. 

The characteristics of the three PDMs suggest that 
both Type A and B neurons are able to encode more 
than one parameter of the slit displacement stimulus 
(i.e., velocity, position and cumulative position). The 
first PDM, which resembled the first-order Volterra 
kernel, had a differentiating (high-pass) characteristic 
and encoded primarily the stimulus velocity – although 
some position encoding also took place by virtue of the 
fact that the positive and negative peak deflections of 
the PDM in the time domain were not equal (they would 
be equal in case of a  strictly differentiating PDM). The 
second and third PDMs had mixed band-pass and low-
pass characteristics, implying encoding of velocity 
(within a preferred range defined by the pass-band), 
position and cumulative position. 

 The scatterograms of Figs. 3-4 show that the 
mapping between the PDM output values and the 
resulting action potentials was similar in Type A and B 
neurons, which is also reflected in the PFFs of Fig. 5. 
The latter suggest that action potential encoding was 
directionally selective mostly with respect to the 
preferred-velocity and position of the displacement, 
since the marginal PFF ),( 21 uufM  was nonzero for 
negative values of the second PDM output u2 only (Fig. 
5); whereas it was symmetric with respect to the 
primarily velocity-dependent PDM output u1. The 
strong directional selectivity with respect to position 
was also observed for the transduction of mechanical 
stimuli into transmembrane current and potential [5]. 

The discrepancy observed between their estimated 
zeroth-order kernel values may reflect their differences 
in the recovery from Na+ channel inactivation. Voltage-
activated sodium current (INa) is primarily responsible 
for the leading edge of the action potential in many 
neurons. While INa generally activates rapidly when a 
neuron is depolarized, its inactivation properties vary 
significantly among different neurons and it can 
occasionally exhibit slowly and rapidly inactivating 
components within the same neuron. In the case of Type 
A and B neurons, it has been shown with voltage-clamp 
experiments [6] that the differences in their response 
characteristics are due primarily to the Na+ channel 
inactivation properties and particularly the recovery 
from inactivation, which was found to be significantly 
slower in Type A neurons. The same was demonstrated 
by using a simplified Hodgkin-Huxley model [7], where 
the firing patterns of Type A and B neurons were 
reproduced by using different time constants for the INa 
recovery from inactivation (120 ms and 40 ms 

respectively), as well as different slope factors (5 mV 
and 9 mV respectively). However, the fast INa activation 
and inactivation dynamics, which have been shown to 
be similar in Type A and B neurons with single time 
constants of 2-3 ms and 5-10 ms respectively [7], may 
dominate the obtained estimates in the present study 
(the kernel memory was found to be about 10-15 ms). 
Therefore, we postulate that the different characteristics 
of the INa recovery from inactivation are reflected 
mainly on the zeroth-order model component. We must 
also note that pseudorandom stimulation results in 
continuous action potential firing, therefore Na+ 
channels may not be inactivated or recover from 
inactivation completely, as in the case of step 
stimulation used in the aforementioned studies. 

 
Conclusions 
 

The PDM analysis provides a compact 
representation of mechanoreceptor dynamics, which 
describes quantitatively their ability to encode multiple 
features of mechanical stimuli and achieves excellent 
performance in terms of predicting the resulting action 
potentials. It can also assist in understanding and 
dissecting the underlying physiological mechanisms, 
when combined with suitable experimental 
manipulation of the relevant ionic processes. 
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