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Abstract:
This paper suggests a formula for the computation
of a confidence limit for a magnitude squared cohe-
rence (MSC) estimated with segment overlapping. So
far, the confidence limit could be computed exactly
only if MSC was estimated without segment overlap-
ping. In case of overlapped segmentation the confi-
dence limit could be only estimated through a quantile
estimation, a procedure, which is shown to be impre-
cise. The suggested formula allows a solid evaluation
of MSC estimated with segment overlapping, which
provides more precise results. The confidence limit
computation is intended for the cortico-muscular co-
herence analysis, which investigate coupling between
the electroencephalogram (EEG) and the electromyo-
gram (EMG). The formula is shown to be valid for sig-
nals with length typically used for EEG-EMG MSC
computation – in particular the signal length assur-
ing at least 100 degrees of freedom of an MSC esti-
mate. Examples of EEG-EMG MSC were also used
to show that the combination of the proposed formula
and overlapped segmentation provides more precise
MSC estimates, and can detect weaker EEG-EMG
coupling.

Introduction

Coherence Function

The coherence function of two signalsu[n] and v[n] is
defined as [1]

γ(Ω) =
Suv(Ω)√

Su(Ω)Sv(Ω)
, (1)

whereSuv(Ω), Su(Ω) andSv(Ω) are the cross-spectral and
the power spectral densities ofu[n] andv[n]. More com-
monly a value of|γ(Ω)|2, termed as the mean squared
coherence (MSC), is used.

MSC serves as a measure of linear coupling between
two signals, being zero if these signals are uncorrelated
and being one if signals are linearly coupled (i.e. one
signal was created from another through linear filtration).

EEG-EMG Coherence

A significant coherence has been reported between a
record of brain electrical activity, the electroencephalo-

gram (EEG), and a record of electrical activity of a con-
tracted muscle, the electromyogram (EMG). This cohe-
rence is most distinct for EEG recorded over the primary
sensimotor area contralateral to the contracted muscle. It
usually occurs in the beta band (15-30Hz) and occasion-
ally in the low gamma band (30-60Hz) or the alpha band
(6-12Hz) [2]. From a technical point of view the value of
EEG-EMG MSC is quite low – about 0.1 only – however,
it was proven to be significantly greater than zero, and so
it confirms a positive coupling between EEG and EMG.

Statistical Evaluation of Coherence Significance

With stochastic nature of EEG and EMG signals, EEG-
EMG MSC cannot be computed exactly but has to be es-
timated. Estimation, however, results in certain errors,
which make the evaluation of EEG-EMG MSC estimate
difficult. In particular, while for a true MSC, its being
greater than zero suffice to expose EEG-EMG coupling,
the random nature of an MSC estimate causes that it can
be greater than zero even if the true MSC is not (that is
when EEG and EMG are uncorrelated). Therefore, we
need to find a value an MSC estimate has to exceed to
confirm that the true MSC is greater than zero (i.e. EEG
and EMG are correlated). Mathematically, we seek a
valuec, exceeding of which has a low probabilityα, pro-
vided that the true MSC is zero.

P
[
|γ̂(Ω)|2 > c

∣∣∣ |γ(Ω)|2 = 0
]

= α , (2)

whereP[.|.] denotes a conditional probability operator,
and |γ(Ω)|2 and |γ̂(Ω)|2 are the true MSC and its esti-
mate, respectively. The value ofc is referred to as the
(1−α) ·100% confidence limit (e.g. [3]), and is essential
for evaluating EEG-EMG coherence.

Methods of MSC Estimation and Statistical Evalua-
tion1

Estimation Procedure

To estimate EEG-EMG MSC the spectral densities in (1)
need to be estimated. In almost all papers dealing with
EEG-EMG MSC a direct estimation procedure [5] (a.k.a.
the modified Welch method) was used. Namely, signals

1Only non-parametric methods of MSC estimation will be reviewed
in this section. For parametric approaches see e.g. [4].
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 u[n] andv[n], N samples long, are segmented intoL seg-
mentsul [n] andvl [n]

ul [n] = u[l(M−P)+n] ,
vl [n] = v[l(M−P)+n] , (3)

whereM is the length of a segment, andP is the segment
overlap. Each segment is then weighted with a window
wd[n], and its Fourier transform is computed

Ul (Ω) = F
{

ul [n] ·wd[n]
}

, Vl (Ω) = F
{

vl [n] ·wd[n]
}

.

(4)
The spectral densities and MSC are then estimated as

Ŝu(Ω) =
1
L

L

∑
l=1

|Ul |2(Ω) , Ŝv(Ω) =
1
L

L

∑
l=1

|Vl |2(Ω) ,

Ŝuv(Ω) =
1
L

L

∑
l=1

U∗
l (Ω)Vl (Ω) , (5)

|γ̂uv(Ω)|2 =
|Ŝuv(Ω)|2

Ŝu(Ω) · Ŝv(Ω)
. (6)

We will now overview the variations of this estimation
method with respect to the possibility of confidence limit
computation or estimation.

Non-Overlapped Segmentation

In the majority of papers, dealing with EEG-EMG MSC,
non-overlapped segmentation in (3) is used (i.e.P = 0).

The advantage of this approach is a known statisti-
cal distribution of MSC estimate (6) [6], which allows
to derive an exact expression for the significance levelc.
Namely, if MSC is estimated fromL non-overlapped seg-
ments the confidence limit is [3]

c = 1−α1/(L−1) , (7)

where the value of2L is referred to as the number of de-
grees of freedom of an MSC estimate.

The disadvantage of the non-overlapped approach is
that information contained in analyzed signals is some-
how waisted. It is a known fact, that employing overlap
into estimation procedures (5) and (6) increases their pre-
cision, lowering their variance and in the case of MSC
even bias.

For better illustration, we computed bias and variance
of MSC estimated with varying amount of segment over-
lap. For each value of overlap, MSC was computed in
170000 trials with formulas (5) and (6), using normally
distributed random signals with true MSC of 0 and 0.2.
The signal length was chosen to provide 32 segments in
non-overlapped case. The estimated bias and variance in
dependance on the segment overlap is shown in Figure 1,
each row showing results for a different weighting win-
dow. Note, that at 70% overlap (i.e.P = 0.7 ·M) the bias
and variance of MSC is at least two times smaller than in
the non-overlapped case2.

2Similar illustration has already been used in [6].
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w[n] – Blackman window (the same with Kaiser with
β = 10)
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Figure 1: Bias and variance of an MSC estimate in de-
pendance on the amount of segment overlap.

Overlapped Segmentation

To our knowledge there is only one work [7] dealing
with MEG-EMG coherence (MEG is a record of mag-
netic field of a brain; MEG-EMG MSC is similar to EEG-
EMG MSC, and methods of their estimation are identi-
cal), where overlapped segmentation is used.

The advantage of this method is high precision of the
estimated MSC.
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Figure 2: An example of the variation in 99% (left) and
95% (right) confidence limit estimated with (10). Figure
shows ten confidence limits estimated from MSCs com-
puted from uncorrelated signals with equal length.

The disadvantage of this method is an unknown sta-
tistical distribution of the MSC estimate. This makes the
exact computation of the confidence limit impossible, and
its becoming difficult to decide if an EEG-EMG MSC es-
timate indicates any EEG-EMG coupling.

This drawback has been partially solved (e.g. see [7])
by a procedure, which estimates the confidence limit ap-
proximately. Namely, the analyzed signalsu[n] andv[n]
are first shifted byd samples (d > M, whereM is the
segment length)

u′[n] = u[n] ,
v′[n] = v[n+d] , (8)

to eliminate their true coherence. Then the MSC ofu′[n]
andv′[n] is estimated inM discrete points

Ωd = 2πk/M, k = 0. . .M−1. (9)

Finally, the confidence limitc is estimated as a value,
under which lies(1−α) ·100%values of the estimated
MSC

|γ̂u′v′(Ωd)|2 < c at (1−α) ·100%frequenciesΩd .
(10)

This estimation procedure, though, is essentially a
quantile estimation, and as such is rather imprecise, es-
pecially if α is close to one.

To illustrate imprecision of confidence limit estima-
tion (10) we estimated MSC of uncorrelated normally
distributed signals. Signals wereN = 5000samples long,
segmented intoM = 256 samples long segments, which
were weighted with the Hamming window and over-
lapped by 70%. Then, we estimated 95% and 99% con-
fidence limits. This experiment was repeated 10 times
providing 10 different confidence limit estimates, which
are shown in Fig. 2 together with one of the MSC esti-
mates. Note that the individual confidence limit estimates
vary considerably even though there is only one true con-
fidence limit. For that reason we conclude that the confi-
dence limit estimation procedure (10) is imprecise.

K 20 50 100 200 500
LCL 74.2 187.9 377.7 759.0 1894.0

LPSD 74.0 187.4 376.8 756.7 1900.6
∆[%] 0.27 0.27 0.24 0.30 -0.35

Table 1: Estimated numbers of degrees of freedom of
MSC and PSD. The last line of the table shows their per-
centual relative difference.

Suggested Method

In this section we derive a formula that provides a value
of the confidence limit deterministically without any ran-
dom fluctuations.

We have noticed that in both non-overlapped and
overlapped cases there is a relationship between the num-
ber of degrees of freedom2L in formula (7) and the num-
ber of degrees of freedom ofχ2 distribution that approx-
imates the distribution of the power spectral densities
(PSD) in (5). In the non-overlapped case the numbers
of degrees of freedom are obviously equal. In the over-
lapped case the equality seems to hold too, at least ap-
proximately. To illustrate the latter case we computed
500 MSC estimates of normally distributed spectrally
white uncorrelated signals, segmented intoM = 1024
samples long segments, which were overlapped by 70%
and weighted with the Hamming window. The signal
length wasN = M ·K, whereK =20, 50, 100, 200, 500.
For each MSC estimate we estimated a 95% confidence
limit using (10). The individual confidence limit esti-
mates were then averaged, providing one precise confi-
dence limit estimate. This estimate was substituted into
formula (7), which provided the number of degrees of
freedom2LCL needed to reach this confidence limit. Con-
currently, we estimated the number of degrees of freedom
2LPSDof χ2 distribution that best fits PSD used for MSC
estimation, using maximum likelihood method

LPSD= argmax
L

∏
i

fχ2(Ŝi |2L) , (11)

where fχ2(.,2L) is the probability density function ofχ2

distribution with 2L degrees of freedom and̂Si are the
individual estimates of PSD used for the computation of
MSCs. The estimatedLCL andLPSD, shown in Table 1,
seem to be very close. Therefore, in case of overlapped
segmentation, we suggest the confidence limit to be com-
puted with (7), but with the number of degrees of free-
dom equal to those ofχ2 distribution that best fits PSD in
(5). The question remaining is how to obtain the value of
LPSDwithout using rather cumbersome maximum likeli-
hood estimation.

Suppose thatSu(Ω), Sv(Ω) andSuv(Ω) are estimated
through the indirect procedure [5]

Ŝu = F
{

R̂u[k] ·wind[k]
}

, Ŝv = F
{

R̂v[k] ·wind[k]
}

,

Ŝuv = F
{

R̂uv[k] ·wind[k]
}

, (12)
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 where wind[k] is a weighting window (scaled so that
wind[0] = 1 [8]), andRu[k], Rv[k], Ruv[k] are the auto and
cross-correlation functions ofu[n] andv[n] defined as

R̂u[k] =
1
N

N−k−1

∑
n=0

u[n] ·u[n+k] , (13)

R̂v[k] =
1
N

N−k−1

∑
n=0

v[n] ·v[n+k] , (14)

R̂uv[k] =
1
N

N−k−1

∑
n=0

u[n] ·v[n+k] . (15)

According to [8],Su(Ω) andSv(Ω) haveχ2 distribu-
tion with 2L degrees of freedom

2L =
2N

∑
k

w2
ind[k]

. (16)

Additionally, it can be shown that the indirect ap-
proach (12) is equivalent to the direct one (5) if overlap
P = M− 1 is used,M− 1 zeros are padded before and
behind the signalsu[n] andv[n], and

wind[n] =
M

∑
m=1

wd[m]wd[m+n] , (17)

(see the appendix for derivation). Therefore, with this
setting, the the number of degrees of freedom of MSC
estimated with (6) can be approximated with formula (16)
and the confidence limit is

c = 1−α1/(L−1) . (18)

Moreover, the extensive overlapP = M−1 can be re-
duced. The first row of Figure 1 indicates that for the
Hamming and Hanning window MSC variance and bias
does not change any more after exceeding 70% overlap.
Hence, we tried decreasing the overlap to 70%, and we
obtained MSC estimates, confidence limits of which are
still given by formula (18) – this is shown using statisti-
cal tests in the next section. Additionally, from the sec-
ond and third row of Fig. 1 we similarly deduced that the
segment overlap can be reduced to 80% for the Blackman
and Kaiser window with parameter 10 and to 90% for the
Kaiser window with parameter 20 (high amount of over-
lap, however, increases the computational cost; therefore,
we find Hamming and Hanning window to be the most
suitable choice, as they provide low leakage and require
lower amount of overlap).

Testing

To test the suggested method, we estimated MSC of un-
correlated signals in 1000 trials. We used normally dis-
tributed signals segmented into M=1024 samples long
segments, which were weighted with the Hamming,
Blackman or Kaiser (β = 10) window and overlapped
accordingly. The signal length was chosen to obtain

w[n] – Hamming window

α
Q

Q
QQ
L 100 200 500 1000 2000

0.01 1.9 1.4 0.7 0.7 0.9
0.05 1.2 0.7 0.3 0.0 0.2
0.10 1.0 0.7 -0.2 -0.2 0.0

w[n] – Blackman window

α
Q

Q
QQ
L 100 200 500 1000 2000

0.01 1.8 0.2 1.0 -2.6 -0.6
0.05 0.4 0.4 -0.6 -2.0 -0.3
0.10 0.2 0.6 0.1 -1.7 -0.5

w[n] – Kaiser window (β = 10)

α
Q

Q
QQ
L 100 200 500 1000 2000

0.01 2.3 1.5 0.8 0.1 -0.3
0.05 -0.1 0.5 0.4 0.2 0.3
0.10 -0.2 1.2 0.6 0.0 0.4

Table 2: Relative errors between precisely estimated con-
fidence limits and confidence limits computed with for-
mulas (16) and (18).

2L =100, 200, 500 and 1000 degrees of freedom3. In
each trial we computed a confidence limit estimate (10).
Finally, the individual estimates were averaged, provid-
ing one precise confidence limit estimatec. Next, we
compared the value ofc to the confidence limit provided
by the formula (18), computing their relative difference

∆ =
c− ĉ

c
·100%. (19)

These differences are shown in Table 2.

Table 2 shows that the relative difference between the
precisely estimated confidence limit (the best approxima-
tion to the true one) and the value provided by formula
(18) is small. We therefore conclude that the formula (18)
provides a good mean for the confidence limit computa-
tion of MSC estimated with overlapping4.

3The range of degrees of freedom is deduced from the requirement
on the precision of an EEG-EMG MSC estimate. Since the true EEG-
EMG MSC is often smaller than 0.1, the confidence limit should be
0.02 at maximum. Such value of confidence limit requires at least 298
degrees of freedom (follows from (7)).

4We noticed, however, that the computation of confidence limit will
deviate for degrees of freedom smaller than 50. Even though so small
number of degrees of freedom is not used in the EEG-EMG MSC com-
putations, it is used in other applications. Therefore, we will address
this problem in our future work.
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 Examples

This section illustrates how advantageous it is, when a
known confidence limit formula allows the use of over-
lapped segmentation in the MSC estimation.

Presented MSCs were computed using EEG and
EMG signals measured during an isometric extension of
an index finger. Signals were 2.5 minutes long (sampling
at 512Hz givesN≈ 80000), segmented into M=512 sam-
ples long segments, which were weighted with a Ham-
ming window. EEG-EMG MSCs were computed with
both zero and 70% overlap.

Estimated EEG-EMG MSCs are shown in Figure 3.
MSCs estimated without overlapping are shown in the
left column, while the corresponding MSCs estimated
with 70% overlap are on the right.

Note that in the first three rows EEG-EMG MSC es-
timated without overlapping exceeds the confidence limit
weakly, while the overlapped segmentation has revealed
much clearer EEG-EMG coupling. In the last three rows
EEG-EMG MSCs already distinguishable without over-
lapping are computed with less random variation when
overlapping was employed. Thus, when the confidence
limit formula allows the use of overlapped segmentation,
the final EEG-EMG MSC estimate can reveal weaker
EEG-EMG coupling and the resulting EEG-EMG MSCs
are more precise.

Moreover, if the precision attained with non-
overlapped segmentation is already sufficient the sug-
gested method of MSC estimation can provide the same
precision with half the data. This follows from the com-
parison of the number of degrees of freedom of MSC es-
timates obtained with and without overlapping. In the
non-overlapped case, the signal lengthNno−ovrlp provides
2L = 2Nno−ovrlp/M degrees of freedom. In the over-
lapped case, the signal lengthNovrlp provides the2L de-
grees of freedom given by formula (16). The precision
of MSCs estimated with and without overlapping will be
the same ifL = L , which will happen when

Novrlp = Nno−ovrlp

∑
k

w2
ind[k]

M
, (20)

which for Hamming windowwd[k] gives

Novrlp = 0.523·Nno−ovrlp . (21)

Thus, the overlapped segmentation provides the precision
of non-overlapped segmentation with only half the data.

Conclusion

The procedure suggested for EEG-EMG estimation ap-
pears to be superior to the previously used methods. First,
the deterministic formula for confidence limit computa-
tion gives more accurate values than the hitherto used
method based on an imprecise quantile estimation. Sec-
ond, the precise knowledge of confidence limit allows the
MSC to be estimated with overlapped segmentation, that

provides more precise MSC estimates. Additionally, it
was illustrated, that this increased precision allows to de-
tect weaker EEG-EMG coupling and that estimated EEG-
EMG MSCs have less random variance.
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Figure 3: EEG-EMG MSCs. The left collum shows
MSCs estimated without overlapping. Corresponding
MSCs estimated with overlapping are in the right collum.
The horizontal lines represent 99% confidence limits.

Appendix

Comparison of Direct and Indirect Estimation of
Spectral Characteristics

This appendix analyzes the equivalence of a direct and
indirect estimation of spectral characteristics. It is shown
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 that under certain conditions these two approaches pro-
vide equivalent results.

We will analyze an estimate of a cross-spectral den-
sity Suv(Ω) of two signalsu[n] andv[n] (the same deriva-
tion can be done for auto-spectral densities). First sup-
pose thatSuv(Ω) is estimated aŝSuv(Ω) using direct ap-
proach (5) with a signal lengthN, segment lengthM, seg-
ment overlapP = M−1 and weighting windowwd[n].

To outline the relationship between the direct estimate
(5) and the indirect estimate (12) we will analyze the in-
verse Fourier transform of̂Suv(Ω).

F−1{Ŝuv
}

=
1
L

L

∑
l=1

F−1{U∗
l Vl

}
=

=
1
L

L

∑
l=1

(
ul [−n]wd[−n]

)∗(vl [n]wd[n]
) (3)

↓
=

=
1
L

L

∑
l=1

M−1

∑
m=0

u[l −n+m]wd[−n+m]v[l +m]wd[m] =

=
M−1

∑
m=0

wd[m]wd[m−n]
1
L

L

∑
l=1

u[l −n+m]v[l +m] . (22)

If the inner sum in (22) was not dependent onm it would
denote the cross-correlation ofu[n] andv[n]. To get rid of
this dependance, we will requireM−1zeros to be padded
before and behindu[n] andv[n]

u̇[n] = 0, . . . ,0︸ ︷︷ ︸
M−1

,u[n],0, . . . ,0︸ ︷︷ ︸
M−1

,

v̇[n] = 0, . . . ,0︸ ︷︷ ︸
M−1

,v[n],0, . . . ,0︸ ︷︷ ︸
M−1

. (23)

When u̇[n] and v̇[n] (with length Ṅ and number of seg-
mentsL̇) are used instead ofu[n] andv[n], the shift intro-
duced by addingm in the inner sum of (22) will not have
any effect on the summation and

1

L̇

L̇

∑
l=1

u̇[l −n+m]v̇[l +m] =
1

L̇

Ṅ

∑
l=1

u̇[l −n]v̇[l ] =

=
Ṅ

L̇
R̂u̇v̇[n] =

N

L̇
R̂uv[n] . (24)

Thus, (22) will be

F−1{Ŝ̇uv̇
}

=
Ṅ

L̇
R̂u̇v̇[n]

M−1

∑
m=0

wd[m]wd[m−n] =

=
Ṅ

L̇
R̂u̇v̇[n] ·MRwd[n] , (25)

and soŜ̇uv̇ can also be computed as

Ŝ̇uv̇ =
Ṅ

L̇
F

{
MRwd[n] · R̂u̇v̇[n]

}
=

=
Ṅ

L̇
F

{
wind[n]R̂u̇v̇[n]

}
=

N

L̇
F

{
wind[n]R̂uv[n]

}
, (26)

which, up to a multiplicative constant, is the indirect esti-
mate ofSuv (the constaṫN/L̇ cannot be incorporated into

the weighting windowwind[n] because this window has
to meet the conditionwind[0] = 1 [1, 8], which is accom-
plished exactly whenwind[n] = MRwd[n]).

In conclusion, the direct and indirect approaches are
equivalent up to a multiplicative constant, if the adja-
cent segments are mutually shifted by one sample only,
M−1 zeros is padded before and behind the signals, and
the weighting functionwind[n] of the correlation estimate
R̂u̇v̇[n] is given by

wind[n] =
M

∑
m=1

wd[m]wd[m+n] . (27)
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