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Abstract: Methods for directly measuring muscle 
forces are not so far available and calculating 
muscle forces is difficult, because many muscles act 
cooperatively. However, orthopeadists, 
biomechanical engineers and physical therapists 
need to take muscle forces into consideration 
because joint contact forces, as well as muscle 
forces, need to be estimated in order to understand 
the joint and bone loading. Therefore an artificial 
neural network (NN) with a learning algorithm was 
used in order to predict the muscle forces in elbow 
joint. This paper describes collecting and 
preprocessing the data; suggestion and training the 
NN. In conclusion generalization performance was 
improved, using various methods for preprocessing 
the data. 
 
Introduction 
 

In biomechanics, it is one of important issues to 
study the distribution of muscle forces between 
individual muscles in order to understand the joint and 
bone loading. There exist 4 general methods for 
estimating the muscle forces during human movements 
(heuristic method based on statics or inverse dynamics 
which are based on simple assumptions for load 
sharing, an inverse dynamical approach involving 
processing of experimental motion data, modelling and 
static optimization to solve the muscle redundancy 
problem, an EMG-to-force processing approach, direct 
dynamical approach involving model-driven 
simulations of the movement task). These methods are 
difficult to use, the calculations take a long time. 
Therefore an artificial neural network (NN) with a 
learning algorithm is used in order to predict the 
muscle forces in elbow joint. The elbow joint was 
selected because it provides a good visual 
demonstration, and the movement is uniplanar and 
uniarticular. Current NN can be trained to solve 
problems that are difficult for conventional computers 
or human beings. The big advantage of NN is 
obtaining results without knowledge of the algorithm 
procedure or without full and exact information. 

The proposed object of the neural network [12] 
simulated the cooperation of 7 musculotendon 
actuators in the elbow joint, four flexors: m.biceps 
brachii c.longum and c.breve; m.brachialis; 

m.brachioradialis; and three extensors: m.triceps 
brachii c.laterale, c.mediale and c.longum for 4 
movement conditions (combination of fast and slow 
motion and unloaded and with weight). In our study 
there was attempt to study all input parameters which 
influence resulting muscle forces. For input parameters 
were taken 14 muscle properties (physiological 
characteristics of muscles participating in the particular 
joint mechanism, together with data about the 
movement and electric activity of the muscles). 

This paper is focused on improving generalization 
performance, using various methods for preprocessing 
the data. 
 
Materials and Methods 
 

Using the Matlab Neural Network Toolbox, the 
backpropagation NN with a learning algorithm was 
programmed. Standard backpropagation NN is a 
gradient descent algorithm, in which the network 
weights are moved along the negative of the gradient of 
the performance function. The term backpropagation 
refers to the manner in which the gradient is computed 
for nonlinear multilayer networks. Properly trained NN 
tends to give reasonable answers when presented with 
inputs that the network has never seen. 

The architecture of Neural network object: The 
architecture of NN was the feedforward multilayer 
network, in this case consisting of three layers (input 
layer and two hidden layers followed by an output 
layer). The network object with 30 neurons in the 1st 
hidden layer and with 24 neurons in the 2nd hidden 
layer was proposed. Between input layer and 1st hidden 
layer and between 1st and 2nd hidden layer there were 
used sigmoidal transfer function – tansig. Multilayer 
network uses the sigmoidal transfer functions, because 
they are differentiable functions. Between 2nd hidden 
layer and ouput layer was used linear transfer function – 
purelin. Linear transfer function was used so the neural 
outputs took on any value. A schematic representation 
of NN object is shown in Figure 1. 
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Figure 1: A schematic representation of three-layer 

feedforward NN with supervised learning algorithm. 
 
Input/target pairs: In NN object, 14 input 

parameters were used for estimating the muscle forces. 
The used input parameters were: musculotendon 
length, LMT, velocity of muscle shortening, v, 
pennation angle, "0, optimal muscle fibre length, l0, 
physiological crossectional area, PCSA, tendon slack 
length, LST, maximal isometric muscle force, F0, force-
velocity factor, Fv, active force-muscle length factor, 
Fla, passive force-muscle length factor, Flp, muscle 
activity, a(t), and three degrees of history of muscle 
activity, a1H(t+∆t), a2H(t+2∆t) and a3H(t+3∆t). 

An arm movements were from full extension 
(φE=0°) to full flexion (φF=145°) [9] of the elbow joint 
for a fixed shoulder joint. The forearm was free to 
move in the sagittal plane of the elbow. The elbow 
flexion/extension movements were recorded using the 
6-camera 60Hz VICON Motion Analysis system, two 
movement speeds (slow, 1.1rad/sec and fast, 
2.8rad/sec) and two loading conditions (unloaded and 
with 4.2kg bar-bell) were studied. The electric activity 
of the observed muscles was recorded by surface (non 
invasive) electromyography (EMG). EMG is 
investigative method that is based on scan muscle 
activities. The processed EMG signal was done by 
filtering of frequences which are lower then 20Hz and 
higher then 500Hz, offsetting, rectifying (rendering the 
signal to have excursions of one polarity) and 
integrating the signal over a specified interval of time 
[1]. The processed and the normalized EMG signal 
was taken as the input of muscle activity, a(t) and the 
history of muscle activity, a1H(t+∆t), a2H(t+2∆t), 
a3H(t+3∆t). 
The muscles consist of an active force generating 
component and a parallel connective tissue 
component. The parallel connective tissue does not 
actively generate force but if it is stretched beyond its 
resting length produces a passivec force. As well as the 
musculotendon length, LMT, having an effect on the 
maximum force it can generate, so does the velocity of 
muscle shortening, v. The musculotendon length, LMT, 
(the length of the entire muscle-tendon unit origin to 
insertion) was estimated from anatomical positions of 
muscle attachments and recorded kinematic data, the 
velocity of muscle shortening, v, was calculated from 
recorded kinematic data (the slow movement and the 
fast movement unloaded, and loaded, respectively). 

Some of the muscular parameters were taken from 
[11] (the optimal muscle fiber length, l0, and the 

pennation angle, α0). Because PCSA crossing across all 
fibres of the muscle, was estimated the pennation angle, 
α0, which determines organization of fibres in a muscle. 
Tendon slack length, LST, was theoretically calculated 
by method published in [2] and [13]. Maximal isometric 
muscle force, F0, was calculated as physiological 
crossectional area, PCSA, multiplied by specific muscle 
tension, σ, where specific muscle tension is 
σ=31.8N.cm-2 [6]. The force-muscle length factor was 
taken into account in terms of [3], and the curves of 
passive, Flp, and active, Fla, properties, scaled to 
provide a destription for specific muscle are fit by 
parabolic and exponential functions Force-velocity 
factor, Fv, was calculated from hill equation [4] (for 
concentric contraction) and modified hill equation [7] 
(for eccentric contraction). 

The output parameter (OP) must be known for 
training as well. As OP, the muscle force, applying the 
Virtual Muscle system, see [6], was used in order to 
relate this to the real muscle force. The Virtual Muscle 
system is a modeling package designed to run on Matlab 
(The Mathworks Inc., Natick, MA) and also requires 
Simuling module for Matlab. Inputs are muscle 
morphometrical data, time depending on length of 
musculotendon and muscle activity. 
Preprocessing the training data: NN training was made 
more efficient if certain preprocessing steps were 
performed on the network representative set of 
input/target pairs. Post-training analyses were also 
carried out. The approach for scaling the network inputs 
and targets was to normalize the mean and standard 
deviation of the training set so that they had zero mean 
and unity standard deviation. Consequently, the 
dimension of the input vectors was reduced by principle 
component analysis (PCA) [5]. The input vectors were 
uncorrelated with each other and the components with 
the largest variation came first, which eliminated those 
components that contributed the least to the variation in 
the data set. 
Two features of the Neural Network Toolbox were 
designed to improve network generalization - automated 
regularization (trainbr) [8] and the framework of early 
stopping. 

In automated regularization, the weights and biases 
of the network were assumed to be random variables 
with specified distributions. The regularization 
parameters were related to the unknown variances 
associated with these distributions. When was used 
Bayesian regularization, it was important to train NN 
object until it has reached convergence. 

In the second technique, early stopping, the 
preprocessing data was divided into three subsets. The 
first subset was the training set. The second subset was 
the validation set, which was used for computing the 
gradient and updating the network weights and biases. 
The third subset was used for simulation the network 
response. When the validation error increased, the 
training was stopped. The validation set should be 
representative of all points in the trainig set. 
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Training NN object: In the course of learning the 

NN object, the main goal was to find the solution with 
the smallest error and the fastest convergence. 
Minimization of learning error was performed by 
modifying the network topology, by changing the 
number of neurons in the hidden layers and by 
changing the learning rate. The NN object was also 
sensitive to the number of neurons in their hidden 
layers. Too few neurons led to underfitting. Too many 
neurons led to overfitting. If the learning rate of the 
network was set up too high, the correct solution was 
overskipped. If the network learning rate was too low, 
the correct solution very often ends in the local 
minimum, or the algorithm converges very slowly. 

The training data was created from 7 
musculotendon actuators about elbow joint for 4 
movement conditions (combination of fast and slow 
motion and unloaded and with weight). 98 training 
data was considered for each movement. For each 
muscle 4 files were created, that means 98 training 
data x 4 movement = 392 training data. As a whole it 
was 7 muscles x 4 files = 28 files which representative 
all investigated movements. Finally, for the elbow 
problem was available 392 training data x 7 muscles = 
2744 trianing data (all of the input sets from 7 elbow 
actuators). 
 
Results 
 

It was useful to investigate the network response in 
more detail, performed a regression analysis between 
the network response and the corresponding targets. 
The results of these methods (Table 1) show that the 
framework of early stopping with data preprocessed by 
principal component analysis (PCA) (C=0.97) 
provided the best results. The form of Bayesian 
regularization did not generalize well for a problem 
like prediction of muscle forces, see Figure 2. The 
results for trainig were excellent (C=0.999), but after 
generalization performance the results were not 
sufficient (C=0.917). Another disadvantage of the 
Bayesian regularization method was that it took longer 
to converge than early stopping. 
 

 
 
Figure 2: A regression analysis for Bayesian 
regularization between the network response and the 
corresponding targets. On the left side (learned data), 
C is very close to 1, which indicates a good fit. On the 
right side (generalized data), C is lower. The perfect fit 

(output equal to targets) is indicated by the dashed line. 
 

Early stopping with data preprocessing performed 
better (C=0.97) than the early stopping without data 
preprocessing (C=0.89), see Figure 3. The response was 
less than extremely smooth, as when using 
regularization, but the error of the network response was 
smaller. 
 

 
 
Figure 3: A regression analysis for early stopping 
between the network response and the corresponding 
targets. On the left side is processed data. On the right 
side is raw data. The perfect fit (output equal to targets) 
is indicated by the dashed line. 
 
Table 1: In order to compare the methods for improving 
generalization when predicting the muscle forces using 
neural network, we used mean square error, MSE; mean 
absolute error, MAE; and correlation coefficient, C. 
 

Early stopping 
Error Processed 

data 
Raw 
data 

Bayesian 
regularization 

MSE[N] 19.63 446.31 52.79 
MAE[-] 3.46 13.45 4.55 
C[-] 0.97 0.89 0.92 

 
Discussion 

This paper was focused on improving generalization 
performance, using various methods for preprocessing 
the data. For solution was used the neural network-type 
muscle object (NN object) which is a black-box without 
any attempt to follow the internal knowledge of the 
muscle komplex [10]. NN object depends on training 
sets and on current problems which are studied. NN it is 
a good instrument for tasks without knowledge of 
algorithm procedure or without full and exact 
information, for solving complicated mathematical 
description, ability of teaching and generalization. But 
on the other hand there are some disadvantages: difficult 
option of optimal network topology, complication of 
networks, long time for training and difficult estimation 
if generalization is correct, less suitable as universal 
instrument for exact calculations. 

In every event using the artificial neural network to 
the muscle forces estimation is one of the possible ways 
and in the future it can be very strong technique for 
solving this type of problems. 
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Conclusions 
 
Generally, this NN object could be used for predicting 
the muscle force for all muscles, not only for the 
elbow joint, but this of course depends on the training 
data and on preprocessing a representative set of 
input/target pairs. For good generalization and good 
results, it is best to use the framework of early 
stopping with data preprocessing with the help of 
principal component analysis (PCA). Early stopping 
performs well on pattern recognition problems such as 
prediction of muscle forces. 
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